from sklearn.feature_extraction import DictVectorizer import csv from sklearn import tree from sklearn import preprocessing from sklearn.externals.six import StringIO allElectronicsData = open(r'F:/AI/DL_month1201/01DTree/niu.csv', 'rt') reader = csv…
一.Decision Trees Agorithms的简介 决策树算法(Decision Trees Agorithms),是如今最流行的机器学习算法之一,它即能做分类又做回归(不像之前介绍的其他学习算法),在本文中,将介绍如何用它来对数据做分类. 本文参照了Madhu Sanjeevi ( Mady )的Decision Trees Algorithms,有能力的读者可去阅读原文. 说明:本文有几处直接引用了原文,并不是不想做翻译,而是感觉翻译过来总感觉不够清晰,而原文却讲的很明白清晰.(个人…
https://www.researchgate.net/post/How_to_determine_unknown_class_using_neural_network 里面有讨论,说是用rbf神经网络,O-SVM可以搞定 https://www.reddit.com/r/MachineLearning/comments/7t3xei/d_detecting_unknown_classes/ reddit上的讨论,有人专门提到svm是最适合解决这个问题的模型. I've spent lots…
using Bll; using System; using System.CodeDom; using System.Collections.Generic; using System.Collections.ObjectModel; using System.Diagnostics; using System.Linq; using System.Reflection; using System.Runtime.Serialization; using System.ServiceModel…
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题人们找到了一种方法,就是对Decision Trees 进行 Pruning(剪枝)操作. 为了提高Decision Tree Agorithm的正确率和避免overfitting,人们又尝试了对它进行集成,即使用多棵树决策,然后对于分类问题投票得出最终结果,而对于回归问题则计算平均结果.下面是几条…
机器学习算法特点:迭代运算 损失函数最小化训练过程中,在巨大参数空间中迭代寻找最优解 比如:主题模型.回归.矩阵分解.SVM.深度学习 分布式机器学习的挑战: - 网络通信效率 - 不同节点执行速度不同:加快慢任务 - 容错性 机器学习简介: 数据并行vs模型并行: 数据并行 模型并行 分布式机器学习范型: 其他情形 MPI:容错性差.集群规模小.扩展性低 GPU:目前处理规模中等(6-10GB) 1. 同步范型(严格情形每轮迭代进行数据同步) 快等慢,计算资源浪费:网络通信多 eg:MapRe…
Bob has a dictionary with N words in it. Now there is a list of words in which the middle part of the word has continuous letters disappeared. The middle part does not include the first and last character. We only know the prefix and suffix of each w…
sql 先查出已知的数据或者需要的数据再筛选…
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees Vs SVM: Part I In this part we’ll discuss how to choose between Logistic Regression , Decision Trees and Support Vector Machines. The most correct ans…
讲授LDA基本思想,寻找最佳投影矩阵,PCA与LDA的比较,LDA的实际应用 大纲: 非线性降维算法流形的概念流形学习的概念局部线性嵌入拉普拉斯特征映射局部保持投影等距映射实验环节 非线性降维算法: 上节介绍了经典的PCA算法,它虽然在很多问题上取得了成功,但是它有它的局限性,因为在现实世界中我们要处理的很多数据它是非线性的,而PCA本身是一个线性化的算法,用线性算法处理非线性问题是不太合适的,所以我们要有非线性的降维技术. 通过一个非线性的函数将x映射到另一个空间中去,得到一个向量y,x的维度…