洛谷 Codeforces 思路 看到计数和\(998244353\),可以感觉到这是一个DP+生成函数+NTT的题. 设\(s_i\)表示\(i\)是否在集合中,\(A\)为\(s\)的生成函数,即\(A(x)=\sum_n s_nx^n\). 设\(f_n\)为有\(n\)分时二叉树的个数. 考虑枚举左子树大小和根节点权值,得到 \[ f_n=[n=0]+\sum_{i=1}^{mx} s_i \sum_{j=0}^{n-i} f_jf_{n-i-j} \] 然后记\(F(x)\)为\(f\…
题目传送门 传送点I 传送点II 传送点III 题目大意 每个点的权值$c\in {c_{1}, c_{2}, \cdots, c_{n}}$,问对于每个$1\leqslant s\leqslant m$有多少种不同的这样的有根二叉树满足所有点的点权和等于$s$. 先考虑一下怎么用dp来做. 设$f_{n}$表示点权和为$n$的满足条件的二叉树的个数,那么有: $f_{n} = \sum_{c \in C}\sum_{i = 0}^{n - c}f_{i}f_{n - c - i}$ 初值满足$…
原文链接www.cnblogs.com/zhouzhendong/p/CF438E.html 前言 没做过多项式题,来一道入门题试试刀. 题解 设 $a_i$ 表示节点权值和为 $i$ 的二叉树个数,特别的,我们定义 $a_0 = 1$ ,即我们认为没有节点也算一种二叉树. 设 $$g(x) = \sum_{i=1}^n x^{c_i}\\f(x) = \sum_{i=0}^{\infty} a_i x^i$$ 根据组合意义可得 $$f^2(x) g(x) + 1 = f(x) $$ 于是 $$…
题目 首先令\(f_i\)表示权值和为\(i\)的二叉树数量,\(f_0=1\). 转移为:\(f_k=\sum_{i=0}^n \sum_{j=0}^{k-c_i}f_j f_{k-c_i-j}\) 令多项式\(D=\sum_{i=0}^m [i在c中出现过]x^i\),\(F(x)为f的普通生成函数\),根据转移式发现F其实等于F卷积上F再卷积上D,再加上一个1,因为转移式转移不到\(f_0\). 所以 \[\begin{align} F&=F^2D+1\\ DF^2-F+1&=0\\…
http://codeforces.com/contest/438/problem/E 题意:询问每个点权值在 $c_1, c_2, ..., c_m$ 中,总权值和为 $s$ 的二叉树个数.请给出每个$s \in [1,S]$ 对应的答案.($S,m < 10^5$) #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N=(1e5+10)*4, mo=998244353; int…
3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 650  Solved: 283[Submit][Status][Discuss] Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3625 http://codeforces.com/contest/438/problem/E 开方:https://blog.csdn.net/kscla/article/details/79356786 不过还是不会二次剩余. 也不知道为什么取了 G(x)-B(x)=0 而不是 G(x)+B(x)=0. 式子是  B(x) = ( A(x) + G2(x) ) / 2*G(x) ,但写的…
BZOJ 3625 吐槽 BZOJ上至今没有卡过去,太慢了卡得我不敢交了…… 一件很奇怪的事情就是不管是本地还是自己上传数据到OJ测试都远远没有到达时限. 本题做法 设$f_i$表示权值为$i$的二叉树的个数,因为一棵二叉树可以通过左右儿子构建起来转移,我们可以得到转移: $$f_w = \sum_{x, y, w - (x + y) \in c} f_x * f_y$$ 注意到左右子树可以为空,所以$f_0 = 1$. 很容易发现这是一个卷积的形式,我们尝试把它写得好看一点. 先把物品写成生成…
题目链接:洛谷 CF原网 题目大意:有 $n$ 个互不相同的正整数 $c_i$.问对于每一个 $1\le i\le m$,有多少个不同形态(考虑结构和点权)的二叉树满足每个点权都在 $c$ 中出现过,且点权和为 $i$.答案对 $998244353$ 取模. $1\le n,m\le 10^5$. 首先考虑DP,$f_i$ 表示点权和为 $i$ 的树数. 那么枚举根节点的点权和两棵子树的点权和 $f_k=\sum\limits^n_{i=1}c_i\sum\limits^{k-c_i}_{j=0…
传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多项式$B$,求多项式$A$满足$A^2\equiv B\pmod{x^n}$(和多项式求逆一样这里需要取模,否则$A$可能会有无数项) 假设我们已经求出$A'^2\equiv B\pmod{x^n}$,考虑如何计算出$A^2\equiv B\pmod{x^{2n}}$ 首先肯定存在$A^2\equiv B…