CH2101 可达性统计(算竞进阶习题)】的更多相关文章

拓扑排序+状态压缩 考虑每一个点能够到达的所有点都是与该店相邻的点的后继节点,可知: 令f[u]表示u点可到达的节点个数,f[u]={u}与f[v](u, v)的并集 于是可以利用状态压缩,能够到达的节点用1表示,这样更新f的时候直接求并集即可 #include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace std; typedef long long ll; inline int lowbit(int x){ return x…
点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的点) 但是对于这道题,如果我们还要这样求的话显然是会超时的,意外要枚举所有点的话有点勉强 ... 考虑一次把重心的子树全部遍历,统计到重心的距离,放进数组中,排序.然后我们可以用指针对撞的方法,用l,r两个指针分别从前后开始扫描. 容易发现,当指针再l的位置时,如果我们记录距离排好序的数组rd[l]…
二分 一道藏的很深的二分题... 题目保证只有一个点有奇数个防具,这个是突破口. 因为 奇数+偶数=偶数,我们假设某个点x,如果有奇数点的防具在x的左边,那么x的左边的防具总数一定是奇数,右边就是偶数 所以我们可以用这个来二分. 至于统计防具的公式,那就是小学学过的等差数列项数=(末项-首项)/公差+1.. #include <bits/stdc++.h> #define INF 0x3f3f3f3f #define full(a, b) memset(a, b, sizeof a) usin…
LCA + 树上差分(边差分) 由题目意思知,所有主要边即为该无向图的一个生成树. 我们考虑点(u,v)若连上一条附加边,那么我们切断(u,v)之间的主要边之后,由于附加边的存在,(u,v)之间的路径形成了一个环, 所以我们还必须将这条附加边也切断. 因此我们可以看成(u,v)之间的路径上的所有边都被覆盖了一次. 我们可以统计出所有边被覆盖的次数,就可以自然的到答案: 若该边被覆盖了0次,那么切断主边之后随意切断一条附加边即可,答案总数 += 附加边的数量 若该边被覆盖了1次,那么切断主边之后必…
树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可以先把树直径找出来(最长链),然后把路径上的边权全部取反(1变-1),再找一次树的直径,如果第二次找的直径包含了取反的部分(即为重叠部分),这个重叠部分显然需要走两次. 可以推得答案为:2(n-1)-(L1-1)-(L2-1) 如果没有重叠部分,那么显然正确:假如有重叠部分,我们先减去了(L1-1)…
IDA* 这题真不会写..估价函数太巧妙了.. 按照lyd神牛的说法我们把a[i+1]=a[i]+1记为正确后继,反之则记为错误后继 那么考虑最优的一次交换区间,至多能够纠正三个错误后继,所以我们统计序列的错误后继数n,n/3就是估价函数的值 因为把某区间移到后面和把另外一个区间移到它前面是等价的,所以我们按从左往右考虑区间后移即可 初始迭代深度为原序列最少需要的移动次数,移动次数+估价函数值超过迭代深度就直接返回搜索失败 每一次搜索完之后,最少移动次数(迭代深度)++ #include <bi…
A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最短距离,这样就能满足估价函数的性质了 要注意一点,当起点和终点一样的时候第k短路就变成k+1短了,因为0也算一条... 话说回来为啥我用pair就MLE了呢.... #include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace st…
离散化+排序 离散化统计人数就好,本来不难,但是测试点太丧心病狂了...CF还是大哥啊 #include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace std; typedef long long ll; inline int lowbit(int x){ return x & (-x); } inline int read(){ int X = 0, w = 0; char ch = 0; while(!isdigit(…
单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> #define INF 0x3f3f3f3f #define full(a, b) memset(a, b, sizeof a) using namespace std; typedef long long ll; inline int lowbit(int x){ return x & (-x);…
单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成为了转移状态的候选. 那如果第i个工人要涂的话,我们可以假设我们是从k+1涂到j的,根据题意可以求出k的取值范围,然后状态转移的条件限制了j的取值范围. 我们考虑每j从小到大增加的过程,j对应的k的取值是一个上界不变下届变大的区间,是一个滑动窗口,那我们可以用单调队列来维护决策k的最优候选. #in…