【XSY2535】整数 NTT】的更多相关文章

题目描述 问有多少个满足以下要求的\(k\)进制数: 1.每个数字出现的次数不超过\(n\) 2.\(0\)没有出现过 3.若\(g_{i,j}=0\),则\(i\)不能出现恰好\(j\)次. 两次询问之间会修改\(g\)中一个位置的值(\(0\)变\(1\)或\(1\)变\(0\)). 输出所有询问的答案的和. \(3\leq k\leq 10,n\leq 14000,m\leq 20\) 模数\(p=786433\),原根\(g=10\) 题解 假设第\(i\)个数用了\(c_i\)个,答案…
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理, 折半引理与求和引理 重新定义 多项式的表示 快速傅里叶变换FFT 通过 FFT 在单位复数根处插值 FFT的速度优化与迭代实现 炸精现场与 NTT 原根 NTT 任意模数 NTT 卷积状物体与分治 FFT FWT 与位运算卷积 FWT 与 \(\text{or}\) 卷积 FWT 与 \(\te…
题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多…

NTT

1 问题描述FFT问题解决的是复数域上的卷积.如果现在的问题是这样:给出两个整数数列$Ai,Bj,0\leq i\leq n-1,0\leq j\leq m-1$,以及素数$P$,计算新数列$Ci=(\sum_{k}A_{i-k}B_{k})\%P$.不在$A,B$定义域内的值均为0.NTT就是解决这样在模意义下的卷积问题. 2 预备知识原根的概念:对于两个正整数$a,m$,如果$Gcd(a,m)=1$,那么存在$d\leq m-1$(比如$\varphi (m)$)使得$a^{d}\%m=1$…
先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. 我们所需要的就是O(nlogn)快速地将两个系数多项式表示成点值多项式,O(n)求得乘积的点值表示后O(nlogn)还原成系数多项式. 这里就需要套FFT板子了... FFT中取n个单位根,需要n是2的幂. 又因为n个点可确定一个次数小于n的多项式,所以n > 乘积多项式的最高次数. 以上. HD…
学了好久,终于基本弄明白了 推荐两个博客: 戳我 戳我 再推荐几本书: <ACM/ICPC算法基础训练教程> <组合数学>(清华大学出版社) <高中数学选修> 预备知识 复数方面 找数学老师去 \[i^{2}=-1,i为虚数的单位\] 坐标系上纵轴就是虚数轴,复数就是这上面的点 三种表示法: \[一般:a + bi,a为实部,b为虚部\] \[指数:e^{i\theta}*坐标系上的模长\] \[三角:模长*(cos\theta + i sin \theta)\] 运算…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a,b<=n 输入格式 输入三个整数n,a,b. 输出格式 输出一个整数,表示答案. 思路 这道题是真的神啊... 首先,根据官方题解的思路,首先有一个n^2的DP: 定义dp[i][j]表示一个长度为i的排列,从前往后数一共有j个数字大于所有排在它前面的数字. 首先有转移式: \[dp[i][j]=dp[…
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\(a,p\)互素,且\(p>1\), 对于\(a^n \equiv 1 \pmod{p}\)最小的\(n\),我们称之为\(a\)模\(p\)的阶,记做\(\delta_p(a)\) 例如: \(\delta_7(2)=3\), \(2^1 \equiv 2 \pmod{7}\) \(2^2 \equ…
从理论上说,经过人们优化的FFT已经十分优秀,能够处理大部分的多项式乘法,但是有的时候仍然会出现下面的情况: 1)常数仍然比较大 2)在进行与整数有关的FFT时,发现得到的结果是一堆诡异的数,你需要不停的和精度搏斗 那么在这时,你就需要学会快速数论变换(NTT) 前置芝士 快速傅里叶变换 你可以上网百度,或者看我的博客 阶与原根 我们由欧拉定理可以知道,对于任意的正整数\(a.m\),如果满足\(gcd(a,m)=1\),就有\(a^{\varphi(m)}\equiv 1(mod\ m)\)…
题目描述 小南一共有\(n\)种不同的玩具小人,每种玩具小人的数量都可以被认为是无限大.每种玩具小人都有特定的血量,第\(i\)种玩具小人的血量就是整数\(i\).此外,每种玩具小人还有自己的攻击力,攻击力可以是任意非负整数,且两种不同的玩具小人的攻击力可以相同.我们把第\(i\)种玩具小人的血量和攻击力表示成\(a_i\)和\(b_i\). 为了让玩具小人们进行战斗,小南打算把一些小人选出来,编成队伍.一个队伍可以表示成一个由玩具小人组成的序列:\((p_1,p_2,\ldots,p_l)\)…
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\}\)中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数\(m\),你能对于任意的\(s(1\leq s\leq m)\)计算出权值为\(s\)的神犇二叉树的个数吗? 我们只需要知道答案关于\(998244353\)取模后的值. \(n,m\…
首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少.(虽然不用递推式也能显然地知道答案是2n-1). 类似地,lqp拆分有递推式f(n)=Σf(i)fib(n-i) (i=0~n-1).由乘法分配律就可以推出.特别地,f(0)=1. 又是一个卷积.是不是可以直接算了?啊要分治FFTn有1e6而且还不是NTT模数……肯定跑不过去啊.于是考虑生成函数. 设其生成函数为F(x),斐波拉契数列的生成函数为FIB(x).则F(x)=F(x)·FIB…
Description ​ 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~\)个点选\(~k~\)个点一共有\(~C_n^k~\)种方案,请你求出所有方案的\(~f(S)~\)的和, 对\(~924844033~\)取模. ​ 求所有\(~k \in [1, ~n]~\)的答案. 看题戳我 Solution ​ 首先看到这道题,根本不会快速求\(~f(S)~\),所以换一…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1776  Solved: 1055[Submit][Status][Discuss] Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. Input 第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 &…
题目背景 模板题,无背景 题目描述 给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)∗G(x) . 系数对 pp 取模,且不保证 pp 可以分解成 p = a \cdot 2^k + 1p=a⋅2k+1 之形式. 输入输出格式 输入格式: 输入共 33 行.第一行 33 个整数 n, m, pn,m,p ,分别表示 F(x), G(x)F(x),G(x) 的次数以及模数 pp .第二行为 n+1n+1 个整数, 第 ii 个整数 a_iai​…
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项系数. 第三行 m+1m+1 个整数,表示第二个多项式的 00 到 mm 次项系数. 输出格式 一行 n+m+1n+m+1 个整数,表示乘起来后的多项式的 00 到 n+mn+m 次项系数. 样例一 input 1 2 1 2 1 2 1 output 1 4 5 2 explanation (1+…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b_0x^0+b_1x^1+b_2x^2+...b_ix^i+...+b_{m-1}x^{m-1}$ 则 $C=c_0x^0+c_1x^1+c_2x^2+...c_ix^i+...+c_{m+n-2}x^{m+n-2}$ 其中 $$c_k=\sum_{i+j=k}^{i<n,j<m}a[i]b[j]…
FFT&NTT总结 一些概念 \(DFT:\)离散傅里叶变换\(\rightarrow O(n^2)\)计算多项式卷积 \(FFT:\)快速傅里叶变换\(\rightarrow O(nlogn)\)计算多项式卷积 \(NTT:\)快速数论变换\(\rightarrow\)对\(FFT\)的常数优化 \(MTT:\)\(NTT\)的一些拓展 FFT 多项式&卷积 设\(A(x)\)表示一个\(n-1\)次多项式 则\(A(x)=\sum_{i=0}^{n-1}a_ix^i\) 而卷积就是两个…
题目描述 求长度为 $n$ 的序列,每个数都是 $|S|$ 中的某一个,所有数的乘积模 $m$ 等于 $x$ 的序列数目模1004535809的值. 输入 一行,四个整数,N.M.x.|S|,其中|S|为集合S中元素个数. 第二行,|S|个整数,表示集合S中的所有元素. 1<=N<=10^9,3<=M<=8000,M为质数 1<=x<=M-1,输入数据保证集合S中元素不重复 输出 一行,一个整数,表示你求出的种类数mod 1004535809的值. 样例输入 4 3 1…
题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为方案数 mod 1004535809. 样例输入 3 样例输出 4 题解 容斥原理+NTT+多项式求逆 设 $f_i$ 表示 $i$ 个点的简单无向连通图的数目,$g_i$ 表示 $i$ 个点的简单无向图的数目. 根据定义得 $g_i=2^{\frac{n(n-1}2}$ . 对于 $f_i$ ,考虑容斥…
3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助: 给定整数x,求所有可以生成出的,且满足数列…
5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Status][Discuss] Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出. Input 第一行包含两个正…
$ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度. 小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 \(1…
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大值的数的个数,求长度为 \(n\) 的排列中满足 \(A = a\) 且 \(B = b\) 的排列个数.\(n \le 10^5\),答案对 \(998244353\) 取模. \(\color{#0066ff}{输入格式}\) 三个整数n,a,b \(\color{#0066ff}{输出格式}\…
A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 9413    Accepted Submission(s): 1468 Problem Description Calculate A * B.   Input Each line will contain two integers A and B.…