LOJ#2353 货币兑换】的更多相关文章

CDQ分治优化斜率优化DP. 有个结论就是每天买完卖完....知道这个之后考虑今天卖的是哪天买的就能写出n²DP了. 发现形式是fi = max(aibj + cidj)的形式.我们可以把ci除出来,就是斜率优化了. 然后发现横坐标和斜率全部没有单调性,于是CDQ分治搞一搞. #include <bits/stdc++.h> ; ; long double a[N], b[N], c[N], R[N], f[N], s, k[N], v[N], w[N]; int n, node[N], t[…
题意略 题解:可以列出dp方程\(dp[i]=max(dp[j]*{\frac{a[i]*c[j]+b[i]}{a[j]*c[j]+b[j]}}\),化简可以得到\(\frac{dp[i]}{b[i]}=\frac{a[i]}{b[i]}*\frac{dp[j]*c[j]}{a[j]*c[j]+b[j]}+\frac{dp[j]}{a[j]*c[j]+b[j]}\),就变成了y=kx+b的形式,能cdq分治维护,也能set维护动态凸包 cdq: //#pragma GCC optimize(2)…
题目传送门 纪念一下第一道(?)自己 yy 出来的 NOI 题. 考虑 dp,\(dp[i]\) 表示到第 \(i\) 天最多有多少钱. 那么有 \(dp[i]=\max\{\max\limits_{j=1}^{i-1}a[i]*(dp[j]/(a[j]*r[j]+b[j])*r[j])+b[i]*dp[j]/(a[j]*r[j]+b[j]),dp[i-1]\}\) 我们稍微观察一下,里面那个式子似乎能写成斜率优化的样子: 令 \(t[j]=dp[j]/(a[j]*r[j]+b[j])\),假设…
loj2353. 「NOI2007」 货币兑换 链接 https://loj.ac/problem/2353 思路 题目不重要,重要的是最后一句话 提示 输入文件可能很大,请采用快速的读入方式. 必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有的金券. 所以f[i]表示第i天最大收益 设第i天把m元换成券(A券rate[i]*x个,B券x个),则\(a[i]*rate[i]*x+b[i]*x=m\) \(x=\frac{m}{a[i]*rate[i]+b[i]…
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 3396  Solved: 1434[Submit][Status][Discuss] Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金…
dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡树维护上凸壳, 询问时就在凸壳上二分...时间复杂度O(NlogN) ----------------------------------------------------------------------------------------------- #include<cmath> #i…
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5541  Solved: 2228[Submit][Status][Discuss] Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金…
额... 首先,看到这道题,第一想法就是二分答案+线段树... 兴高采烈的认为我一定能AC,之后发现n是500000... nlog^2=80%,亲测可过... 由于答案是求满足题意的最大长度-最小长度最小,那么我们可以考虑将区间按长度排序 之后,因为我们是需要最大最小,所以,我们必定选择在排完序的区间上取连续的一段是最优情况(起码不会比别的差) 因此,考虑双指针扫一下就可以了... 是不是很水? 由于懒得写离散化,一开始写的动态开点线段树,我*****什么鬼?mle?!256mb开不下! lo…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…