一.创建DataFrame和Dataset 1.1 创建DataFrame Spark 中所有功能的入口点是 SparkSession,可以使用 SparkSession.builder() 创建.创建后应用程序就可以从现有 RDD,Hive 表或 Spark 数据源创建 DataFrame.示例如下: val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCr…
一.创建DataFrame和Dataset 1.1 创建DataFrame Spark中所有功能的入口点是SparkSession,可以使用SparkSession.builder()创建.创建后应用程序就可以从现有RDD,Hive表或Spark数据源创建DataFrame.示例如下: val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() va…
以wordcount为示例进行深入分析 1  33  ) { 46        logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")") 47        stage.pendingTasks ++= tasks 48        logDebug("New pending task…
一.概述 关于Spark是什么.为什么学习Spark等等,在这就不说了,直接看这个:http://spark.apache.org, 我就直接说一下Spark的一些优势: 1.快 与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上.Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流. 2.易用 Spark支持Java.Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用.而且Sp…
一.执行第一个Spark程序 1.执行程序 我们执行一下Spark自带的一个例子,利用蒙特·卡罗算法求PI: 启动Spark集群后,可以在集群的任何一台机器上执行一下命令: /home/spark/spark-1.6.1-bin-hadoop2.6/bin/spark-submit \ --class org.apache.spark.examples.SparkPi \ --master spark://master:7077 \ --executor-memory 1G \ --total-…
不多说,直接上干货! Spark SQL支持的API SQL DataFrame(推荐方式,也能执行SQL) Dataset(还在发展) SQL SQL 支持basic SQL syntax/HiveQL 程序中使用SQL会返回DataFrame command-line和JDBC/ODBC中均可以使用…
一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 DataFrame API 对结构化数据进行查询: 支持多种开发语言: 支持多达上百种的外部数据源,包括 Hive,Avro,Parquet,ORC,JSON 和 JDBC 等: 支持 HiveQL 语法以及 Hive SerDes 和 UDF,允许你访问现有的 Hive 仓库: 支持标准的 JDBC…
初次尝试用 Spark+scala 完成项目的重构,由于两者之前都没接触过,所以边学边用的过程大多艰难.首先面临的是如何快速上手,然后是代码调优.性能调优.本章主要记录自己在项目中遇到的问题以及解决方式,下篇会尝试调优方法.末尾会分享自己的学习资料,也供大多菜鸟第一次使用作为参考.由于自己项目中大量使用spark sql,所以下面的经验大多是和spark sql有关.同样下面也列出作为菜鸟在学习过程中的困惑以及踩的坑,还请大牛勿笑 ~_~ 如果有更好的方式解决,欢迎留言,一起学习. 1.常用场景…
很多人一个误区,Spark SQL重点不是在SQL啊,而是在结构化数据处理! Spark SQL结构化数据处理 概要: 01 Spark SQL概述 02 Spark SQL基本原理 03 Spark SQL编程 04 分布式SQL引擎 05 用户自定义函数 06 性能调优   Spark SQL概述 Spark SQL是什么? Spark SQL is a Spark module for structured data processing 特别注意:.3.0 及后续版本中,SchemaRD…
Spark SQL提供在大数据上的SQL查询功能,类似于Shark在整个生态系统的角色,它们可以统称为SQL on Spark. 之前,Shark的查询编译和优化器依赖于Hive,使得Shark不得不维护一套Hive分支,而Spark SQL使用Catalyst做查询解析和优化器,并在底层使用Spark作为执行引擎实现SQL的Operator. 用户可以在Spark上直接书写SQL,相当于为Spark扩充了一套SQL算子,这无疑更加丰富了Spark的算子和功能,同时Spark SQL不断兼容不同…