P1356 数列的整除性】的更多相关文章

dp百题进度条[2/100] 题目链接 题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5,-21,-15,那么就可以构造出8个表达式: 17+5+(-21)+15=16 17+5+(-21)-15=-14 17+5-(-21)+15=58 17+5-(-21)-15=28 17-5+(-21)+15=6 17-5+(-21)-15=-24 17-5-(-21)+15=48…
P1356 数列的整数性打的骗分,在多组数据的情况下还能骗到分,可以了.又TMD是dp.f[i][j]表示+-第i个数能否达到%p后的余数j,如果f[n][0]==true就可以. #include<iostream> #include<cstdio> #include<queue> #include<algorithm> #include<cmath> #include<ctime> #include<set> #inc…
P1356 数列的整数性 题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5,-21,-15,那么就可以构造出8个表达式: 17+5+(-21)+15=16 17+5+(-21)-15=-14 17+5-(-21)+15=58 17+5-(-21)-15=28 17-5+(-21)+15=6 17-5+(-21)-15=-24 17-5-(-21)+15=48 17-5-(-…
Time Limit: 1 second Memory Limit: 128 MB [问题描述] 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5,-2,-15,那么就可以构造出8个表达式: 17+5+(-21)+15=16 17+5+(-21)-15=-14 17+5-(-21)+15=58 17+5-(-21)-15=28 17-5+(-21)+15=6 17-5+(-21)-1…
题目描述 对于任意一个整数数列,我们可以在每两个整数中间任意放一个符号'+'或'-',这样就可以构成一个表达式,也就可以计算出表达式的值.比如,现在有一个整数数列:17,5,-2,-15,那么就可以构造出8个表达式: 17+5+(-21)+15=16 17+5+(-21)-15=-14 17+5-(-21)+15=58 17+5-(-21)-15=28 17-5+(-21)+15=6 17-5+(-21)-15=-24 17-5-(-21)+15=48 17-5-(-21)-15=18 对于一个…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一条命令,格式参见问题描述中的表格.任何时刻数列中最多含有500 000个数,数列中任何一个数字均在[-1 000, 1 000]内.插入的数字总数不超过4 000 000个,输入文件大小不超过20MBytes. Output 对于输入数据中的GET-SUM和MAX-SUM操作,向输出文件依次打印结果…
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段. 给定正整数数列,求出全部片段包含的所有的数之和.如本例中10个片段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1.递归公式:f[n]=f[n-1]+f[n-2],f[1]=f[2]=1;(比较耗时,效率不高) 代码: int fib(int n) //递归实现 { ) { ; } || n==) ; )+fib1(n-); } 2.数组实现:空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快.代码:…