问题描述 LG5337 BZOJ5508 题解 设\(opt_{i,j}(i \in [1,n],j \in [1,26])\)代表区间\([1,i]\),结尾为\(j\)的写法. 设\(exist_{i,j}(i,j \in [1,26])\)代表\((i,j)\)能否前后相邻,如果为\(1\),则不能. 则有 \[opt_{i,j}=\sum_{k=1}^{26} opt_{i-1,k}(exist_{k,j}=0)\] 发现\(n \le 10^{15}\),就这样递推肯定不行,所以矩阵优…
题目描述 一天小甲苯得到了一条神的指示,他要把神的指示写下来,但是又不能泄露天机,所以他要用一种方法把神的指示记下来. 神的指示是一个字符串,记为字符串 \(s_1\),\(s_1\) 仅包含小写字母 \(\texttt{a-z}\). 现在小甲苯想要写下神的指示,记为字符串 \(s_2\),\(s_2\) 仅包含小写字母 \(\texttt{a-z}\),要求 \(s_1\) 中的相邻的两个字母不能在 \(s_2\) 中相邻地出现. 现在给定 \(s_2\) 的长度,小甲苯想知道他有多少种方法…
LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + 1} - 3)x + t$,可以发现$t < (2^{l + 1} + 2^{r + 1} - 3)$,于是考虑计算对于$t$,左边走了$l$,右边走了深度$r$,几种走法使得总和为$t$ 容易发现右边最小一定是走了$2^ - 1$于是可以扣掉 再发现我们其实是对于左边和右边串选择长度为$[1,l…
问题描述 LG5338 LOJ3105 BZOJ5509 题解 建立一棵\(\mathrm{Treap}\),把原来的\(val\)换成两个值\(ac,tim\) 原来的比较\(val_a<val_b\)改成(设两个结点分别为\(node_a,node_b\)): 1.若\(ac_a>ac_b\),则\(node_a<node_b\) 2.若\(1\)不成立,若\(ac_a=ac_b,tim_a<tim_b\),则\(node_a<node_b\) 3.若\(1,2\)均不成…
题目链接 问题分析 参照数据范围,我们需要一个能够在\(O(n\log n)\)复杂度内维护有序数列的数据结构.那么平衡树是很好的选择.参考程序中使用带旋Treap. 参考程序 #pragma GCC optimize( 3 ) #include <cstdio> #include <ctime> #include <algorithm> namespace Treap { struct member { int Number, Time; bool operator…
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 这样做 . 把通配符设成 \(0\) 然后 . 别的按 \(\mathrm{ASCII}\) 码 给值 , 最后把他写成式子的形式 ... 后来发现太年轻了 qwq 先要做这题 , 那么先发现性质咯 : 存在一个长度为 \(len\) 的 \(border\) 当且仅当对于 \(\forall i…
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 对于每个询问,只需要暴力合并两个线性基即可 每个点只会被加到logn个线性基里,所以总复杂度为O(nlogn60 + q60*2) 然后我写了句memset(b,0,sizeof 0)...被卡了1h... 代码 #include<cstdio> #include<vector> #…
题目链接 问题分析 比较明显的最短路模型.需要堆优化的dij.建图的时候注意细节就好. 参考程序 #include <bits/stdc++.h> #define LL long long //#define DEBUG using namespace std; const int Maxn = 10010; const int Maxm = 100010; const int Maxk = 12; struct edge { int To, Next, Cost; }; edge Edge[…
题目链接 题目分析 据说这是一道生成函数题 看到限制条件,我们首先想到的就是对有多少组讨论cxk的人进行容斥.然后就是求剩下的人随便放有多少种方法了.考虑现在每种剩\(a,b,c,d\)人,还需要排\(n\)人,那么方案数就是 \[ \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c\sum_{l=1}^d [i+j+k+l=n]{n\choose i}{n - i\choose j}{n-i-j\choose k}{n-i-j-k\choose l} \] 其中\([]\…
题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行排列,规定不能出现喜爱唱.跳. rap.篮球的人在序列中依次出现,问合法方案数. 下文将喜爱唱.跳. \(rap\).篮球的人依次出现的区间称为聚集区间,长度为 \(4\). 思路(容斥原理 + 生成函数 + \(\mathcal{NTT}\)) 首先,我们可以发现如果顺着求方案数并不好求.秉持顺难…