强化学习七 - Policy Gradient Methods】的更多相关文章

一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的action,还是根据ε-greedy policy以1-ε的概率选择使得action value 最大的action,action 的选择都离不开action value 的计算).即没有action value的估计值就无法进行action选择,也就没有Policy,这类方法被称为 value-ba…
Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅老师的视频,就可以听懂个大概了.当然了还有莫凡的强化学习更具实战性,听莫凡的课基本上可以带我们入门. 术语和基本思想 基本组成: 1.actor (即policy gradient要学习的对象, 是我们可以控制的部分) 2.环境 environment (给定的,无法控制) 3.回报函数 rewar…
1 算法的优缺点 1.1 优点 在DQN算法中,神经网络输出的是动作的q值,这对于一个agent拥有少数的离散的动作还是可以的.但是如果某个agent的动作是连续的,这无疑对DQN算法是一个巨大的挑战,为了解决这个问题,前辈们将基于值的方法改成了基于策略的方法,即输出动作的概率. 1.2 缺点 策略梯度算法应用未来损失的return作为更新迭代的依据,即在一个回合过后,在这一回合中,若执行的某一动作的动作价值R大,则会加在下一回合选择这一动作的概率,反之,若执行的某一动作的动作价值R小,则会在下…
深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.youtube.com/watch?v=z95ZYgPgXOY&t=512s…
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 20…
DRL 教材 Chpater 11 --- 策略梯度方法(Policy Gradient Methods) 前面介绍了很多关于 state or state-action pairs 方面的知识,为了将其用于控制,我们学习 state-action pairs 的值,并且将这些值函数直接用于执行策略和选择动作.这种形式的方法称为:action-value methods. 下面要介绍的方法也是计算这些 action (or state) values,但是并非直接用于选择 action, 而是直…
深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://blog.openai.com/openai-baselines-ppo/ Code: https://github.com/openai/baselines Paper: https://arxiv.org/pdf/1707.06347.pdf Video Tutorials: https://ww…
Dictum:  Life is just a series of trying to make up your mind. -- T. Fuller 不同于近似价值函数并以此计算确定性的策略的基于价值的RL方法,基于策略的RL方法将策略的学习从概率集合\(P(a|s)\)变换成策略函数\(\pi(a|s)\),并通过求解策略目标函数的极大值,得到最优策略\(\pi^*\),主要用的是策略梯度方法(Policy Gradient Methods). 策略梯度方法直接对随机策略\(\pi\)进行参…
上一篇博文的内容整理了我们如何去近似价值函数或者是动作价值函数的方法: \[ V_{\theta}(s)\approx V^{\pi}(s) \\ Q_{\theta}(s)\approx Q^{\pi}(s, a) \] 通过机器学习的方法我们一旦近似了价值函数或者是动作价值函数就可以通过一些策略进行控制,比如 \(\epsilon\)-greedy. 那么我们简单回顾下 RL 的学习目标:通过 agent 与环境进行交互,获取累计回报最大化.既然我们最终要学习如何与环境交互的策略,那么我们可…
论文为Google Brain在16年推出的使用强化学习的Neural Architecture Search方法,该方法能够针对数据集搜索构建特定的网络,但需要800卡训练一个月时间.虽然论文的思路有很多改进的地方,但该论文为AutoML的经典之作,为后面很多的研究提供了思路,属于里程碑式的论文,十分值得认真研读,后面读者会持续更新AutoML的论文,有兴趣的可以持续关注   来源:晓飞的算法工程笔记 公众号 论文:Neural Architecture Search with Reinfor…