详解numpy的argmax】的更多相关文章

从最简单的例子出发 假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组a中最大数的索引是多少.这个问题对于刚学编程的同学就能解决.最直接的思路,先假定第0个数最大,然后拿这个和后面的数比,找到大的就更新索引.代码如下 a = [3, 1, 2, 4, 6, 1] maxindex = 0 i = 0 for tmp in a: if tmp > a[maxindex]: maxindex = i i += 1 print(maxindex) 这个问题虽然简单.但是可以帮助…
对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴: axis = 1 代表对纵轴操作,也就是第1轴: numpy库中横轴.纵轴 axis 参数实例详解: In [1]: import numpy as np #生成一个3行4列的数组 In [2]: a = np.arange(12).reshape(3,4) In [3]: a Out[3]: array([[ 0, 1, 2, 3], [ 4, 5,…
Numpy能够读写磁盘上的文本数据或二进制数据. 将数组以二进制格式保存到磁盘 np.load和np.save是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为.npy的文件中. import numpy as np a=np.arange(5) np.save('test.npy',a) 这样在程序所在的文件夹就生成了一个test.npy文件 将test.npy文件中的文件读出来 import numpy as np a=np.load('test.np…
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2.4 全连接(full connection) 2.5 损失函数(softmax_loss) 2.6 前向传播(forward propagation) 2.7 反向…
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflow,更加灵活地控制训练过程.本文演示了如何使用低阶TensorFlow Core 搭建卷积神经网络(ConvNet)模型,并演示了使用TensorFlow编写自定义代码的方法. 对很多开发人员来说,神经网络就像一个“黑匣子”, 而TensorFlow Core的应用,则将我们带上了对深度神经网络后台…
深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Restricted Boltzmann Machine(RBM)限制波尔兹曼机 Deep Belief Networks(DBN)深信度网络 Recurrent neural Network(RNN)多层反馈循环神经网络神经网络 对于不同问题(图像,语音,文本),需要选用不同网络模型比如CNN RESNE…
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的github地址上,可下载. 一.多层感知机(MLP)原理简介 多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,…
原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html --------------------------------------------------------------------------------------------------------------- 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2…
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: 这是一个协议缓冲区(protocol buffer),它完整地保存了Tensorflow图:即所有的变量.操作.集合等.此文件以 .meta 为拓展名. b) Checkpoint 文件: 这是一个二进制文件,包含weights.biases.gradients 和其他所有变量的值.此文件以 .ck…
1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(Vitebi Algorthim). 维特比算法在隐马尔科夫模型的预测算法中已经详细介绍和Python实现过,详见以前的博客: [机器学习][隐马尔可夫模型-4]维特比算法:算法详解+示例讲解+Python实现 2.CRF的预测算法之维特比算法2.1维特比算法简介维特比算法实际使用动态规划解CRF条件…
0.摘要 最近一段时间在学习yolo3,看了很多博客,理解了一些理论知识,但是学起来还是有些吃力,之后看了源码,才有了更进一步的理解.在这里,我不在赘述网络方面的代码,网络方面的代码比较容易理解,下面将给出整个yolo3代码的详解解析,整个源码中函数的作用以及调用关系见下图: 参考:https://blog.csdn.net/weixin_41943311/article/details/95672137?depth_1-utm_source=distribute.pc_relevant.non…
Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择对这个算法进行分析主要是因为它用到了一个非常有意思的算法技巧:数据结构 - 堆.而且堆排其实是一个看起来复杂其实并不复杂的排序算法,个人认为heapsort在机器学习中也有重要作用.这里重新详解下关于Heapsort的方方面面,也是为了自己巩固一下这方面知识,有可能和其他的文章有不同的入手点,如有错…
使用树莓派的摄像头,将树莓派自身提供的picamera的API数据转换为Python Oencv可用图像数据: # import the necessary packages from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 # initialize the camera and grab a reference to the raw camera capture…
基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码地址 在自然语言处理中(NLP,Natural Language ProcessingNLP,Natural Language Processing),分词是一个较为简单也基础的基本技术.常用的分词方法包括这两种:基于字典的机械分词 和 基于统计序列标注的分词.对于基于字典的机械分词本文不再赘述,可…
0.聚类 聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法. 1.内在相似性的度量 聚类是根据数据的内在的相似性进行的,那么我们应该怎么定义数据的内在的相似性呢?比较常见的方法是根据数据的相似度或者距离来定义的,比较常见的有: 闵可夫斯基距离/欧式距离 上述距离公式中,当p=2时,就是欧式距离,当p=1时,就是绝对值的和,当p=正无穷时,这个距离变成了维度差最大的那个值. 杰卡德相似系数 一般是…
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share [强化学习]Q-Learning详解1.算法思想QLearning是强化学习算法中值迭代的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈…
from matplotlib import pyplot as plt #调节图形大小,宽,高 plt.figure(figsize=(6,9)) #定义饼状图的标签,标签是列表 labels = [u'第一部分',u'第二部分',u'第三部分'] #每个标签占多大,会自动去算百分比 sizes = [60,30,10] colors = ['red','yellowgreen','lightskyblue'] #将某部分爆炸出来, 使用括号,将第一块分割出来,数值的大小是分割出来的与其他两块…
目录 基于模型的特征选择详解 (Embedded & Wrapper) 1. 线性模型和正则化(Embedded方式) 2. 基于树模型的特征选择(Embedded方式) 3. 顶层特征选择算法(Wrapper方式) 4. 一个完整的例子 5. 总结 6. Tips 7. References 基于模型的特征选择详解 (Embedded & Wrapper) 单变量特征选择方法独立的衡量每个特征与响应变量之间的关系,另一种主流的特征选择方法是基于机器学习模型的方法.有些机器学习方法本身就具…
不多说,直接上干货! 说明: Anaconda2-5.0.0-Windows-x86_64.exe安装下来,默认的Python2.7 Anaconda3-4.2.0-Windows-x86_64.exe安装下来,默认的Python3.5 Anaconda3-5.0.0-Windows-x86_64.exe安装下来,默认的Python3.6 参考 全网最全最详细的Windows下安装Anaconda2 / Anaconda3(图文详解) 1. 以下是在Windows下Anaconda2里正确下载安…
python基础题(53道题详解) 1.简述解释型和编译型编程语言? 概念: 编译型语言:把做好的源程序全部编译成二进制代码的可运行程序.然后,可直接运行这个程序. 解释型语言:把做好的源程序翻译一句,然后执行一句,直至结束! 区别: 编译型语言,执行速度快.效率高:依赖编译器.跨平台性差些.如C.C++.Delphi.Pascal,Fortran. 解释型语言,执行速度慢.效率低:依赖解释器.跨平台性好.如Java.Basic. 2.Python解释器种类以及特点 CPython c语言开发的…
使用树莓派的摄像头,将树莓派自身提供的picamera的API数据转换为Python Oencv可用图像数据: # import the necessary packages from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 # initialize the camera and grab a reference to the raw camera capture…
[转]OpenCV中Mat的详解 每次碰到Mat都得反复查具体的用法,网上的基础讲解不多,难得看到一篇,赶快转来收藏~ 原文地址:http://www.opencvchina.com/thread-1039-1-1.html 目标 我们有多种方法可以获得从现实世界的数字图像:数码相机.扫描仪.计算机体层摄影或磁共振成像就是其中的几种.在每种情况下我们(人类)看到了什么是图像.但是,转换图像到我们的数字设备时我们的记录是图像的每个点的数值. 例如在上图中你可以看到车的镜子只是一个包含所有强度值的像…
SILC算法详解 一.原理介绍 SLIC算法是simple linear iterative cluster的简称,该算法用来生成超像素(superpixel) 算法步骤: 已知一副图像大小M*N,可以从RGB空间转换为LAB空间,LAB颜色空间表现的颜色更全面 假如预定义参数K,K为预生成的超像素数量,即预计将M*N大小的图像(像素数目即为M*N)分隔为K个超像素块,每个超像素块范围大小包含[(M*N)/K]个像素 假设每个超像素区域长和宽都均匀分布的话,那么每个超像素块的长和宽均可定义为S,…
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Pandas数据结构介绍 大家应该都听过表结构,但是,如果让你自己来实现这么一个结构,并且能对其进行数据处理,能实现吗?我相信,大部分人都能做出来,但是不一定能做的很好.而Python中的一个模块pandas给我们提供了一个很好的数据结构,它包括了序列Series和数据框DataFrame.pandas是基于…
不多说,直接上干货! 很多地方都需用到这个知识点,比如Tableau里.   通常可以采取如python 和 r来作为数据处理的前期. Tableau学习系列之Tableau如何通过数据透视表方式读取数据文件(图文详解) 数据长宽转换是很常用的需求,特别是当是从Excel中导入的汇总表时,常常需要转换成一维表(长数据)才能提供给图表函数或者模型使用. python中,我这里只讲两个函数: melt #数据宽转长 pivot_table #数据长转宽 Python中的Pandas包提供了与R语言中…
1.NMS的原理 NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素.NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box.NMS是大部分深度学习目标检测网络所需要的,大致算法流程为: 1.对所有预测框的置信度降序排序 2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的IOU 3.根据2中计算的IOU去除重叠度高的,IOU>threshold就删除 4.剩下的预测框返回第1步,直…
在深度学习中,数据短缺是我们经常面临的一个问题,虽然现在有不少公开数据集,但跟大公司掌握的海量数据集相比,数量上仍然偏少,而某些特定领域的数据采集更是非常困难.根据之前的学习可知,数据量少带来的最直接影响就是过拟合.那有没有办法在现有少量数据基础上,降低或解决过拟合问题呢? 答案是有的,就是数据增强技术.我们可以对现有的数据,如图片数据进行平移.翻转.旋转.缩放.亮度增强等操作,以生成新的图片来参与训练或测试.这种操作可以将图片数量提升数倍,由此大大降低了过拟合的可能.本文将详解图像增强技术在K…
人脸验证算法Joint Bayesian详解及实现(Python版) Tags: JointBayesian DeepLearning Python 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如对代码有兴趣的请移步我的 Github. 如需转载,请附上本文链接,不甚感激!  http://blog.csdn.net/cyh_24/article/details/49059475 Bayesian Face Revis…
引言 在做实例分割或语义分割的时候,我们通常要用labelme进行标注,labelme标注的json文件与coco数据集已经标注好的json文件的格式和内容有差异.如果要用coco数据集的信息,就要对json文件进行修改和转换.本博客提供两种格式的具体内容及含义以及两种格式相互转换的代码,并对两种格式的json标注信息进行可视化. 1.coco格式的json标注信息详解及可视化 从coco官网下载coco的数据集里面,关于实例的标注信息在“annotations_trainval2017.zip…
前言:本篇是TextCNN系列的第三篇,分享TextCNN的优化经验 前两篇可见: 文本分类算法TextCNN原理详解(一) 一.textCNN 整体框架 1. 模型架构 图一:textCNN 模型结构示意 2. 代码架构 图二: 代码架构说明 text_cnn.py 定义了textCNN 模型网络结构 model.py 定义了训练代码 data.py 定义了数据预处理操作 data_set 存放了测试数据集合. polarity.neg 是负面情感文本, polarity.pos 是正面情感文…