Caffe 图像分类】的更多相关文章

  本文主要描述如何使用 CAFFE 进行图像分类. 开发环境要求:windows 10 64位.Visual Studio 2017..NET framework 4.6.1     分类 在一个项目的图像分类中,存在N个分类,每个分类需要有足量训练样本图像和测试样本图像. 训练 定义分类(标签) 分类的标签值 LabelValue 要求从0开始且连续增量为1   样本管理 用于管理每个分类的样本图像.   配置训练参数 主要用于修改基本配置.训练参数等.   注意:loss值越小代表训练效果…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
[caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097   本文章已收录于:  深度学习知识库  分类: deep learning(28)  版权声明:本文为博主原创文章,未经博主允许不得转载. 在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究ale…
一.简单介绍 vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟googlenet不同的是.vgg继承了lenet以及alexnet的一些框架.尤其是跟alexnet框架很像.vgg也是5个group的卷积.2层fc图像特征.一层fc分类特征,能够看做和alexnet一样总共8个part.依据前5个卷积group.每一个group中的不同配置,vgg论文中给出了A~E这五种配置.卷积层数从8到16递增. 从论文中能够看到从8到1…
Caffe是目前深度学习比较优秀好用的一个开源库,采样c++和CUDA实现,具有速度快,模型定义方便等优点.学习了几天过后,发现也有一个不方便的地方,就是在我的程序中调用Caffe做图像分类没有直接的接口.Caffe的数据层可以从数据库(支持leveldb.lmdb.hdf5).图片.和内存中读入.我们要在程序中使用,当然得从内存中读入.参见http://caffe.berkeleyvision.org/tutorial/layers.html#data-layers和MemoryDataLay…
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet.这是CNN在图像分类上的经典模型(DL火起来之后). 在DL开源实现caffe的model例子中.它也给出了alexnet的复现.详细网络配置文件例如以下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train…
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分类.第一篇<实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >有讲过使用Caffe的背景.所以这篇记录使用的素材就是12306的验证码来进行图像识别分类. 1.准备素材 由于这里抓取到的验证码是整合后的大图.就是8张小图片合成的.由于12306的验证码大图并…
背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Tensorflow做深度学习做深度学习的网络搭建和训练需要通过PYTHON代码才能使用,对于不太会写代码的同学还是有一定的使用门槛的.本文将介绍另一个深度学习框架Caffe,通过Caffe只需要填写一些配置文件就可以实现图像分类的模型训练. 关于PAI的深度学习功能开通,请务必提前阅读https://…
对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可. #include <caffe/caffe.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <iosf…
前言:最近参加百度点石大赛,完成商家招牌的分类和检测,把实验过程简单记录下来,具体步骤如下. 环境配置:windows下的visual studio2013和caffe(cpu版本)环境搭建请看我另一篇博客:http://www.cnblogs.com/wmr95/articles/9021748.html 下面写写具体实验流程: 1.首先把比赛平台下的数据集下载放到caffe-master路径下data文件夹中,如图: 首先数据提供的是train和test图片数据及label的txt文件,具体…