Skeleton-Based Action Recognition with Directed Graph Neural Network 摘要 因为骨架信息可以鲁棒地适应动态环境和复杂的背景,所以经常被广泛应用在动作识别任务上,现有的方法已经证实骨架中的关键点和骨头信息对动作识别任务非常有用.然而如何将两种类型的数据最大化地利用还没有被很好地解决. 作者将骨架数据表示成一个有向非循环图(Directed acyclic graph),该图基于自然人体的节点和骨骼的动力学依赖. 这个新颖的图结构用…
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: https://128.84.21.199/pdf/1807.09975.pdf 本文将 Graph Neural Network (GNN) 应用到 person re-ID 的任务中,用于 model 不同 prob-gallery 之间的关系,将该信息也用于 feature learning…
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 Introduction GNNs 中的图卷积操作可以认为是对目标节点的邻居特征线性聚合(加权和)…
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang论文来源:2020, KDD论文地址:download论文代码:download 1 Introduction 本文的预训练任务:子图实例判…
作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
自己讲论文做的异构图神经网络的ppt.再转变成博客有点麻烦,所以做成图片笔记. 论文链接:https://arxiv.org/abs/1903.07293…
CVPR2019 1.An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition 作者:Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, Tieniu Tan 论文链接:https://arxiv.org/abs/1902.09130 2.Improving the Performance of Unimodal Dynami…
w可以考虑从计算机的“机械性.重复性”特征去设计“低效的”算法. https://www.codeproject.com/articles/523074/webcontrols/ Online handwriting recognition using multi convolution neural networks Vietdungiitb, 13 Jan 2013 CPOL This article has been presented at The Ninth International…
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. Kefato, Sarunas Girdzijauskas论文来源:2021, WWW论文地址:download 论文代码:download 1 介绍 本文核心贡献: 使用孪生网络隐式实现对比学习: 本文提出四种特征增强方式(FA): 2 相关工作 Graph Neural Networks GCN…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a 动机 主要针对的任务是RGBD语义分割, 不同于往常的RGB图像的语义分割任务, 这里还可以更多的考虑来自D通道的深度信息. 所以对于这类任务需要联合2D外观和3D几何信息来进行联合推理. 深度信息编码 关于将深度信息编码为图像的方法有以下几种: 通过HHA编码来将深度信息编码为三通道: hori…
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习任务都要求能处理包含丰富的元素间关联关系的图数据,例如物理系统建模.疾病分类以及文本和图像等非结构数据的学习等.图形神经网络(GNNs)是一种连接模型,通过图形节点之间的消息传递捕获图形的依赖性. 图(Graph)是一种对一组对象(node)及其关系(edge)进行建模的数据结构.由于图结构的强大表示能力,近…
Paper Information Title:<How Powerful are Graph Neural Networks?>Authors:Keyulu Xu, Weihua Hu, J. Leskovec, S. JegelkaSources:2019, ICLRPaper:DownloadCode:DownloadOthers:2421 Citations, 45 References Abstract GNN 目前主流的做法是递归迭代聚合一阶邻域表征来更新节点表征,如 GCN 和…
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD论文地址:download 论文代码:download 1 Introduction 问题引入: 图卷积是领域聚合的代表,这些邻域聚合方法中的一层只考虑近邻,当进一步深入以实现更大的接受域时,性能会下降,这种性能恶化归因于过平滑问题( over-smoothing),即当感受域增大时,在传播和更新过…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS . Recurrent Neural Networks(RNNS) ,循环神经网络,是一个流行的模型,已经在许多NLP任务上显示出巨大的潜力.尽管它最近很流行,但是我发现能够解释RNN如何工作,以及如何实现RNN的资料很少…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:45:13  研究背景和动机: 行人动作识别(Human Action Recognition)主要从多个模态的角度来进行研究,即:appearance,depth,optical-flow,以及 body skeletons.这其中,动态的人类骨骼点 通常是最具有信息量的,且能够和其他模态进行互补.…
论文标题:Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptors 来源/作者机构情况: 卧龙岗大学(世界排名230~),第一次听说这个学校.竟然是在澳大利亚的一个学校.好吧,华人果然全球了 李老师是本硕都是浙大的,李老师个人链接如下: https://www.uow.edu.au/~wanqing/#UOWActionDatasets 解决问题/主要思想贡献:…
论文标题:Action recognition based on 2D skeletons extracted from RGB videos 发表时间:02 April 2019 解决问题/主要思想:来源:谷歌最新论文推荐,来自全球排名大概550名的蒙斯大学 使用openPose对图像提取关键点,然后计算关键点的信息,分成三个矩阵,输入网络训练,从而对动作进行分类 成果/优点:  the highest accuracy which is 83.317% with ResNet152 in c…
Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition 摘要 基于骨架的动作识别因为其以时空结合图(spatiotemporal graph)的形式模拟了人体骨骼而取得了显著的效果. 在现有的基于图的方法中,图的拓扑结构是手动设置的,而且在所有层以及输入样本中是固定不变的.这样的方法在用在有层级CNN和不同输入样本的动作识别中不是最佳的. 而且骨架中的具有更多细节和判别式信息二级结…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 摘要 动态人体骨架模型带有进行动作识别的重要信息,传统的方法通常使用手工特征或者遍历规则对骨架进行建模,从而限制了表达能力并且很难去泛化. 作者提出了一个新颖的动态骨架模型ST-GCN,它可以从数据中自动地学习空间和时间的patterns,这使得模型具有很强的表达能力和泛化能力. 在Kinetics和NTU-RGBD两个数据集上a…
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 单头GAPLayer 多头机制 3.2注意力池化层 3.3 GAPNet架构 四.实验 4.1分类 数据集 网络结构 训练细节 结果 消融研究 4.2 语义部件分割 数据集 模型结构 训练细节 结果 五.结论 GAPNet: Graph Attention based Point Neural Ne…
转自:http://blog.csdn.net/kezunhai/article/details/50176209 ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门…
要读的论文: https://www.cnblogs.com/hizhaolei/p/10565405.html 骨架动作识别论文汇总 https://blog.csdn.net/bianxuewei1238/article/details/84936883 AAAI 2018 行为识别论文概览 https://zhuanlan.zhihu.com/p/34322114 已经阅读的论文: 2019年: Action recognition based on 2D skeletons extrac…
Collaborative Spatioitemporal Feature Learning for Video Action Recognition 摘要 时空特征提取在视频动作识别中是一个非常重要的部分.现有的神经网络模型要么是分别学习时间和空间特征(C2D),要么是不加控制地联合学习时间和空间特征(C3D). 作者提出了一个新颖的neural操作,它通过在可学习的参数上添加权重共享约束来将时空特征encode collaboratively. 特别地,作者沿着体积视频数据的三个正交视图进行…
================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/33272629/answer/60279003 有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门弄斧说下video里主流的: Deep Learning之前最work的是INRIA组的Improved Dense…
论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了一种利用卷积神经网络实现实时残余回声抑制(RAES)的方法.在多任务学习的背景下,采用双语音检测器作为辅助任务来提高性能.该训练准则基于一种新的损失函数,我们称之为抑制损失,以平衡残余回声的抑制和近端信号的失真.实验结果表明,该方法能有效抑制不同情况下的残余回声. 关键字:残余回声抑制,卷积神经网络…
论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network[C]//2021 IEEE International Conference on Signal Processing, Communica…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
4.2 Given a directed graph, design an algorithm to find out whether there is a route between two nodes. LeetCode和CareerCup中关于图的题都不是很多,LeetCode中只有三道,分别是Clone Graph 无向图的复制,Course Schedule 课程清单 和 Course Schedule II 课程清单之二.目前看来CareerCup中有关图的题在第四章中仅此一道,这是…
  Find the number Weak Connected Component in the directed graph. Each node in the graph contains a label and a list of its neighbors. (a connected set of a directed graph is a subgraph in which any two vertices are connected by direct edge path.) Ex…