题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive divisors of nnn. For example, σ0(1)=1\sigma_0(1) = 1σ0​(1)=1, σ0(2)=2\sigma_0(2) = 2σ0​(2)=2 and σ0(6)=4\sigma_0(6) = 4σ0​(6)=4. Let S2(n)=∑i=1nσ0(i2).S_2(n…
设 \[f(n)=\sum_{d|n}\mu^2(d)\] 则 \[\begin{eqnarray*}\sigma_0(n^2)&=&\sum_{d|n}f(d)\\ans&=&\sum_{i=1}^n\sigma_0(i^2)\\&=&\sum_{i=1}^n\sum_{d|i}\sum_{k|d}\mu^2(k)\\&=&\sum_{k=1}^n\mu^2(k)G(\lfloor\frac{n}{k}\rfloor)\end{eqnarr…
DIVCNT2 - Counting Divisors (square) #sub-linear #dirichlet-generating-function Let \sigma_0(n)σ​0​​(n) be the number of positive divisors of nn. For example, \sigma_0(1) = 1σ​0​​(1)=1, \sigma_0(2) = 2σ​0​​(2)=2 and \sigma_0(6) = 4σ​0​​(6)=4. LetS_2(…
Refer 主要思路参考了 Command_block 的题解. Description 给定 \(n\)(\(n\le 10^{10}\)),求 \[\sum_{i=1}^n\sigma_0(i^2) \mod 2^{64} \] Solution 首先有一个惯例套路: \[\sigma_0(i\cdot j)=\sum_{x|i}\sum_{y|j}\left[\gcd(x,y)=1\right] \] 在 [SDOI2015]约数个数和 以及 BZOJ4176 Lucas的数论 中,我们将…
Counting Divisors Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 3170    Accepted Submission(s): 1184 Problem Description In mathematics, the function d(n) denotes the number of divisors of…
题目大意:求1~N的每个数因子数的立方和. 题解:由于N过大,我们不能直接通过线性筛求解.我们可以采用洲阁筛. 洲阁筛的式子可以写成: 对于F(1~√n),可以直接线性筛求解. 对于,我们进行以下DP: g[i][j]为1~j中,与前i个质数互质的数的F值之和. dp过程中,有 如果p[i]>j,则g[i][j]=F(1): 如果p[i]*p[i]>j>=p[i],则g[i][j]=g[i-1][j]-p[i]^k*F(1)=g[d][j]-(p[d+1]^k~p[i]^k)*F(1),…
和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\(n^2\)条路径中找出满足xx条件的路径的条数的题, 我们可以根据常识判断要用到点分治. 不过这题并没有用到点分治, 这个一会再说, 我们先来看部分分. 哎呀其实这题好多部分分我都不会写(捂脸 算法1: 直接乘边权处理显然是不行哒, 怕是\(w\leq2\)怕是都要用到高精度了(什么你说\(w\le…
SPOJ DIVCNT2 - Counting Divisors (square) 题意:求 \[ \sum_{i=1}^n\sigma_0(i^2) \] 好棒啊! 带着平方没法做,考虑用其他函数表示\(\sigma_0(i^2)\),把平方消去. \(\sigma_0(n) = (1*1)(n) = \sum_{d\mid n}1\) 我们考虑那些\(n^2\)有而\(n\)没有的因子,\(n=\prod p_i^{a_i}\),那么这些因子里一定有\(p_i^c:c>a_i\). 对于因子…
DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教筛的复杂度分析而已) 你要大力推式子: 把约数个数代换了 把2^质因子个数 代换了 构造出卷积,然后大于n^(2/3)还要搞出约数个数的式子和无完全平方数的个数的容斥... .... 然后恭喜你,spoj上过不去... bzoj能过: #include<bits/stdc++.h> #define…
慢慢化柿子吧 要求的是这个 \[\sum_{i=1}^N\sum_{j=1}^Md(ij)\] 神奇的约数个数函数有一个这样的性质 \[d(ij)=\sum_{x|i}\sum_{y|j}[(x,y)=1]\] 试着从唯一分解定理的角度去理解,将\(i,j\)分别分解质因数 显然\(d(ij)\)应该等于每一个\(p\)在\(i,j\)中分解出来的指数加起来加1再相乘 所以分别枚举所有约数的话,保证这对约数互质就可以求出所有约数了 之后现在的答案变成了 \[\sum_{i=1}^N\sum_{j…