[模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 说明 $n \leq 2000 \; \; \; x_i,y_i,k \leq 998244353$ 自为风月马前卒的分析 拉格朗日插值法 众所周知,\(n + 1\)个\(x\)坐标不同的点可以确定唯一的最高为\(n\)次的多项式.在算法竞赛中,我们常常会碰到一类题目,题目中直接或间接的给出…
题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k+1$ 次多项式,我们找 $k+2$ 个值代进去,然后拉格朗日插值. $n+1$ 组点值对 $(x_i, y_i)$,得到 $n$ 次多项式 $f$ 的拉格朗日插值公式为: $$f(x) = \sum_{i = 0}^n y_i\prod_{j\not =i} \frac{x-x_j}{x_i-x_…
题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格式 输入格式: 第一行两个正整数$n,k$,含义如题 接下来$n$行,每行两个正整数$x_i,y_i$,含义如题 输出格式: 一个整数表示答案 输入输出样例 输入样例#1: 复制 3 100 1 4 2 9 3 16 输出样例#1: 复制 10201 输入样例#2: 复制 3 100 1 1 2 2…
http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名的分数安排方案数 g[i]的求法: 枚举B神这门课x分,则有n-Ri个人的分数<=x ,Ri-1个人的分数>x Ui 上限是1e9,但是g[i] 是一个关于Ui 的n次多项式,所以可以用拉格朗日插值法来求 递推 f[i][j]: 假设f[i-1][w] 转移到了f[i][j],j>=w 前i…
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][j]=sum f[i-1][k]*C(k,j)*C(n-1-k,R[i]-j)  (k>=j) 怎么解释呢,首先前i-1科有k个人已经被碾压,k肯定大于等于j,然后考虑当前这一科有j个人被碾压,那么就需要从k个人中选出j个来即C(k,j),然后从剩下的有R[i]-j个人比B考的少,这些人必须是之前i…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html https://blog.csdn.net/lvzelong2014/article/details/79159346 https://blog.csdn.net/qq_35649707/article/details/78018944 还只会最简单的…
LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1)!(n-1)\) 但是一直写成i! 心态炸裂. 还有就是 明明是分母 要求逆啊 直接乘 然后人没了. 最后是 关于答案的统计 由于被碾压的同学 每一科分数永远小于B神 所以 可以不考虑顺序的 将成绩分配给他们. 而 没有被碾压的同学 不可以直接分配 对于每一种方案来说 他们都是可以选择自由分配的…
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\times C_k^{k-j}\times C_{n-1-k}^{R_i-1-(k-j)}\times g[i]\] 就是先从\(k\)人中选出\(k-j\)在\(i\)这门课比B神得分高,然后再从剩下\(n-1-k\)个人中选\(R_i-1-(k-j)\)个…
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一位同学的一门必修课分数不同时视为两种情况不同.n,m<=100,Ui<=10^9. [算法]计数DP+排列组合+拉格朗日插值 [题解]把分数作为状态不现实,只能逐门课考虑. 设$f[i][j]$表示前i门课,有j个同学被碾压的情况数,则有: $$f[i][j]=g(i)\cdot\sum_{k=j…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html https://blog.csdn.net/qq_35649707/article/details/78018944 这个题要先想好DP方程.dp[ i ][ j ]表示第 i 门课.目前有 j 个人被“碾压”. dp[ i ][ j…