讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用. 大纲: 聚类问题简介聚类算法的分类层次聚类算法的基本思想簇之间距离的定义k均值算法的基本思想k均值算法的流程k均值算法的实现细节问题实验EM算法简介Jensen不等式EM算法的原理推导收敛性证明 聚类算法是无监督学习的典型代表,前边讲过的数据降维算法是无监督学习的另外一种典型代表. 聚类问题简介: 聚类算法的概念第四讲机器学习的基本概念里边已经…
讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用. AdaBoost算法它最典型的应用是视觉的目标检测,比如说人脸检测.行人检测.车辆检测等等.在深度学习流行之前,用这些简单的特征加上AdaBoost分类器来做目标检测,始终是我们工业界的一个主流的方案,在学术界里边它发的论文也是最多的. 大纲: 实验环节应用简介VJ框架简介分类器级联Haar特征训练算法的原…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: 支持向量机简介线性分类器分类间隔线性可分问题线性可分的对偶问题线性不可分问题线性不可分的对偶问题核映射与核函数 支持向量机简介: SVM是所有机器学习算法里边,对数学要求比较高的一种算法,主要难在拉格朗日对偶和KKT条件. 由Vapnik等人1995年提出,在出现后的20多年里它是最有影响力的机器学习算法之一,直到2012年它才…
讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用 AdaBoost算法将用三节课来讲,ANN.SVM.AdaBoost这三种算法都是用三节课来讲,因为这三种算法都非常重要,都有一些成功的应用.AdaBoost和SVM一样整个理论的根基是非常完善的,而且他们都是从1995年左右开始出现,在出现的十几年里边他们都得到了成功的应用. 随即森林它是一种称为Baggi…
讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林的基本原理 训练算法 包外误差 计算变量的重要性 实验环节 实际应用 随机森林是一种集成学习的算法,构建在bootstrap采样基础之上的,bagging算法基于boostrap采样,与之对应的是boosting算法.随机森林是多颗决策树的集成,由于采用了bootstrip采样,在训练时有一部分样本…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: 多分类问题libsvm简介实验环节实际应用SVM整体思路总结 多分类问题: SVM怎么解决多分类问题,整体上有两种思路,第一种思路是多个二分类器的组合来解决多分类问题,第二种思路是直接优化一个多类的损失函数,就是训练出的就只是一个模型可以解决多分类问题. 第一种思路有两种实现: ①1对剩余方案 假如有N个类,就训练n个分类器,每…
之前讲过SVM,是通过最大化间隔导出的一套方法,现在从另外一个角度来定义SVM,来介绍整个线性SVM的家族. 大纲: 线性支持向量机简介L2正则化L1-loss SVC原问题L2正则化L2-loss SVC原问题L2正则化SVC对偶问题L1正则化L2-loss SVC原问题多类线性支持向量机实验环节libsvm和liblinear的比较实际应用 线性支持向量机简介: 不带核函数的预测函数是sgn(wTx+b)的形式,w是所有支持向量的组合,展开之后是sgn(Σ1~l aiyixiTxi+b)的形…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: SVM求解面临的问题 SMO算法简介 子问题的求解 子问题是凸优化的证明 收敛性保证 优化变量的选择 完整的算法 SVM求解面临的问题: SVM的对偶问题是求解一个二次函数的极值问题(二次规划问题): 前边一项是二次型,带有不等式约束和等式约束,C是惩罚因子. 写成矩阵形式: 二次规划问题可以用梯度下降法.牛顿法.坐标下降法等等…
参考文献:https://www.jianshu.com/p/5314834f9f8e # -*- coding: utf-8 -*- """ Created on Mon Jun 11 10:52:14 2018 @author: Administrator """ import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris = dat…
第二十四个知识点:描述一个二进制m组的滑动窗口指数算法 简单回顾一下我们知道的. 大量的密码学算法的大数是基于指数问题的安全性,例如RSA或者DH算法.因此,现代密码学需要大指数模幂算法的有效实现.我们应该从一个简化的方案开始思考:计算\(x^a\mod N\),我们可以用指数算法来求\(x^a\),然后再约减到\(N\).然而,对大多数密码算法来说,\(x^a\)都是非常大的.现在,大多数传统的方法能被简单的在每个阶段模\(N\).这回产生一些改进的技术.下面我会介绍一些计算\(X^E \mo…