首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
hanlp进行命名实体识别
】的更多相关文章
python调用hanlp进行命名实体识别
本文分享自 6丁一的猫 的博客,主要是python调用hanlp进行命名实体识别的方法介绍.以下为分享的全文. 1.python与jdk版本位数一致 2.pip install jpype1(python3.5) 3.类库hanlp.jar包.模型data包.配置文件hanlp.properties放在一个新建目录 4.修改hanlp.properties中root根目录,找到data 代码调用如下: 1|#coding:utf-8 2|''' 3|Created on 2017-11-21 4…
hanlp进行命名实体识别
需要安装jpype先,这个是python调用java库的桥梁. # -*- coding: utf-8 -*- """ Created on Thu May 10 09:19:55 2018 @author: wang小尧 """ import jpype #路径 jvmPath = jpype.getDefaultJVMPath() # 获得系统的jvm路径 ext_classpath = r"./ner/hanlp\hanlp-1.…
8.HanLP实现--命名实体识别
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 8. 命名实体识别 8.1 概述 命名实体 文本中有一些描述实体的词汇.比如人名.地名.组织机构名.股票基金.医学术语等,称为命名实体.具有以下共性: 数量无穷.比如宇宙中的恒星命名.新生儿的命名不断出现新组合. 构词灵活.比如中国工商银行,既可以称为工商银行,也可以简称工行. 类别模糊.有一些地名本身就是机构名,比如"国家博物馆" 命名实体识别 识别出句子中命名实体的…
HanLP分词命名实体提取详解
HanLP分词命名实体提取详解 分享一篇大神的关于hanlp分词命名实体提取的经验文章,文章中分享的内容略有一段时间(使用的hanlp版本比较老),最新一版的hanlp已经出来了,也可以去看看新版的hanlp在这方面有何提升! 文本挖掘是抽取有效.新颖.有用.可理解的.散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程.对于文本来说,由于语言组织形式各异,表达方式多样,文本里面提到的很多要素,如人名.手机号.组织名.地名等都称之为实体.在工程领域,招投标文件里的这些实体信息至…
自然语言18.2_NLTK命名实体识别
QQ:231469242 欢迎nltk爱好者交流 http://blog.csdn.net/u010718606/article/details/50148261 NLTK中对于很多自然语言处理应用有着开箱即用的api,但是结果往往让人弄不清楚状况. 下面的例子使用NLTK进行命名实体的识别.第一例中,Apple成功被识别出来,而第二例并未被识别.究竟是什么原因导致这样的结果,接下来一探究竟. In [1]: import nltk In [2]: tokens = nltk.word_toke…
基于条件随机场(CRF)的命名实体识别
很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法CRF) 2.使用规则对相关数据进行后过滤. 三.具体实现 1.训练数据的生成 主要使用了人民日报免费部分,以及一些及它从网上找到的资源(时间长了,记不住了,好像还自己标注了些) 2.模板的生成 使用的是Unigram,由于考虑到要识别的实体一般情况下没有长距离依赖 以及训练时的效率问题,所以模…
神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结构在NER中也取得了不错的效果.最近,我也阅读学习了一系列使用神经网络结构进行NER的相关论文,在此进行一下总结,和大家一起分享学习. 1 引言 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出…
学习笔记CB007:分词、命名实体识别、词性标注、句法分析树
中文分词把文本切分成词语,还可以反过来,把该拼一起的词再拼到一起,找到命名实体. 概率图模型条件随机场适用观测值条件下决定随机变量有有限个取值情况.给定观察序列X,某个特定标记序列Y概率,指数函数 exp(∑λt+∑μs).符合最大熵原理.基于条件随机场命名实体识别方法属于有监督学习方法,利用已标注大规模语料库训练. 命名实体的放射性.命名实体的前后词. 特征模板,当前位置前后n个位置字/词/字母/数字/标点作为特征,基于已经标注好语料,词性.词形已知.特征模板选择和具体识别实体类别有关. 命名…
NLP入门(五)用深度学习实现命名实体识别(NER)
前言 在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现NER,只要你坚持看完,就一定会很有收获的. OK,话不多说,让我们进入正题. 几乎所有的NLP都依赖一个强大的语料库,本项目实现NER的语料库如下(文件名为train.txt,一共42000行,这里只展示前15行,可以在文章最后的Github地址下载该语料库): played on Mond…
NLP入门(四)命名实体识别(NER)
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER). 命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位.一般来说,命名实体识别的任务就是识别出待处理文本中三大类(实体类.时间类和数字类).七小类(人名.机构名.地名.时间.日期.货币和百分比)命名实体. 举个简单的例子,在句子"小明早上8点去学校上课."中,对其进行命名实…