基于CAS实现无锁结构】的更多相关文章

杨乾成 2017310500302 一.题目要求 基于CAS(Compare and Swap)实现一个无锁结构,可考虑queue,stack,hashmap,freelist等. 能够支持多个线程同时访问该结构 不能有任何锁操作,且操作是线程安全的 对上述的内存单元进行管理,至少malloc与free一次. 二.数据结构 看到题目有一说一,不知道怎么下手,那就google一下先.稍微了解了一下CAS,原准备使用STL模板的队列,后来发现实现题目要求似乎得再Queue的插入和删除函数里面具体实现…
paip.提升性能----java 无锁结构(CAS, Atomic, Threadlocal, volatile, 函数式编码, 不变对象) 1     锁的缺点 2     CAS(CompareAnd Swap/Set)操作automic数据类型AtomicLong,AtomicReference(Java提供的CAS操作) 3     Threadlocal 4     内存屏障(MemoryBarries)和(javavolatile)代替传统lock. 5     . Disrupt…
无锁 并发环境下最常用的同步手段是互斥锁和读写锁,例如pthread_mutex和pthread_readwrite_lock,常用的范式为: void ConcurrencyOperation() { mutex.lock(); // do something mutex.unlock(); } 这种方法的优点是: 编程模型简单,如果小心控制上锁顺序,一般来说不会有死锁的问题: 可以通过调节锁的粒度来调节性能. 缺点是: 所有基于锁的算法都有死锁的可能: 上锁和解锁时进程要从用户态切换到内核态…
AtomicInteger源码分析—基于CAS的乐观锁实现 参考: http://www.importnew.com/22078.html https://www.cnblogs.com/mantu/p/5796450.html http://hustpawpaw.blog.163.com/blog/static/184228324201210811243127/ 1. 悲观锁与乐观锁 我们都知道,cpu是时分复用的,也就是把cpu的时间片,分配给不同的thread/process轮流执行,时间…
AtomicInteger源码分析——基于CAS的乐观锁实现 1. 悲观锁与乐观锁 我们都知道,cpu是时分复用的,也就是把cpu的时间片,分配给不同的thread/process轮流执行,时间片与时间片之间,需要进行cpu切换,也就是会发生进程的切换.切换涉及到清空寄存器,缓存数据.然后重新加载新的thread所需数据.当一个线程被挂起时,加入到阻塞队列,在一定的时间或条件下,在通过notify(),notifyAll()唤醒回来.在某个资源不可用的时候,就将cpu让出,把当前等待线程切换为阻…
Set表示一种没有反复元素的集合类,在JDK里面有HashSet的实现,底层是基于HashMap来实现的.这里实现一个简化版本号的Set,有下面约束: 1. 基于链表实现.链表节点依照对象的hashCode()顺序由小到大从Head到Tail排列. 2. 如果对象的hashCode()是唯一的.这个如果实际上是不成立的,这里为了简化实现做这个如果.实际情况是HashCode是基于对象地址进行的一次Hash操作.目的是把对象依据Hash散开.所以可能有多个对象地址相应到一个HashCode.也就是…
1. 悲观锁与乐观锁 我们都知道,cpu是时分复用的,也就是把cpu的时间片,分配给不同的thread/process轮流执行,时间片与时间片之间,需要进行cpu切换,也就是会发生进程的切换.切换涉及到清空寄存器,缓存数据.然后重新加载新的thread所需数据.当一个线程被挂起时,加入到阻塞队列,在一定的时间或条件下,在通过notify(),notifyAll()唤醒回来.在某个资源不可用的时候,就将cpu让出,把当前等待线程切换为阻塞状态.等到资源(比如一个共享数据)可用了,那么就将线程唤醒,…
用多线程实现一个数字的自增长到1000000,分别用无锁模式和锁模式来实现代码. 1.使用ReentrantLock. package test; import java.util.concurrent.CountDownLatch; import java.util.concurrent.locks.ReentrantLock; public class ThreadWithLock { private static final int THREAD_COUNT=3; private stat…
#include <stdlib.h> #include <stdio.h> #include <pthread.h> #include <iostream> #include <sys/time.h> #include <pthread.h> using namespace std; #define MAXLEN 200000 #define NUM_THREADS 8 #define CAS __sync_bool_compare…
优选阶段通过分离计算对象来实现多个node和多种算法的并行计算,并且通过基于二级索引来设计最终的存储结果,从而达到整个计算过程中的无锁设计,同时为了保证分配的随机性,针对同等优先级的采用了随机的方式来进行最终节点的分配,如果大家后续有类似的需求,不妨可以借鉴借鉴 1. 设计基础 1.1 两阶段: 单点与聚合 在进行优选的时候,除了最后一次计算,在进行针对单个算法的计算的时候,会分为两个阶段:单点和聚合 在单点阶段,会根据当前算法针对单个node计算 在聚合阶段,则会根据当前单点阶段计算完成后,来…