主要知识点: 分组聚合操作-嵌套bucket.         本讲以前面电商实例,从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格. 比如说,现在红色的电视有4台,同时这4台电视中,有3台是属于长虹的,1台是属于小米的,那么: 红色电视中的3台长虹的平均价格是多少? 红色电视中的1台小米的平均价格是多少? 下钻的意思是,已经分了一个组了,比如说颜色的分组,然后还要继续对这个分组内的数据,再分组,比如一个颜色内,还可以分成多个不同的品牌的组,最后对每个最小粒度的分…
主要知识点: 学习聚合知识     一.准备数据     1.家电卖场案例背景建立index 以一个家电卖场中的电视销售数据为背景,来对各种品牌,各种颜色的电视的销量和销售额,进行各种各样角度的分析     PUT /tvs { "mappings": { "sales": { "properties": { "price": { "type": "long" }, "colo…
主要知识点: bucket+metric 计算分种颜色的电视的平均价格     语法: GET /tvs/sales/_search { "size" : 0, "aggs": { "colors": { "terms": { "field": "color" }, "aggs": { "avg_price": { "avg":…
课程大纲     要学其他的metric(count,avg,max,min,sum) count:bucket,terms,自动就会有一个doc_count,就相当于是count avg:avg aggs,求平均值 max:求一个bucket内,指定field值最大的那个数据 min:求一个bucket内,指定field值最小的那个数据 sum:求一个bucket内,指定field值的总和     一般来说,90%的常见的数据分析的操作无非就是count,avg,max,min,sum    …
Atitit  数据存储的分组聚合 groupby的实现attilax总结 1. 聚合操作1 1.1. a.标量聚合 流聚合1 1.2. b.哈希聚合2 1.3. 所有的最优计划的选择都是基于现有统计信息来评估3 1.4. 参考资料3 1. 聚合操作 聚合也是我们在写T-SQL语句的时候经常遇到的,我们来分析一下一些常用的聚合操作运算符的特性和可优化项. 1.1. a.标量聚合 流聚合 标量聚合是一种常用的数据聚合方式,比如我们写的语句中利用的以下聚合函数:MAX().MIN().AVG().C…
分析 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计.它很像SQL中的GROUP BY但是功能更强大. 举个例子,让我们找到所有职员中最大的共同点(兴趣爱好)是什么: GET .monitoring-es-6-2018.08.16/_search{ "aggs": { "all_interests": { "terms": { "field": "sour…
一.概述 bucketing(桶)聚合:划分不同的“桶”,将数据分配到不同的“桶”里.非常类似sql中的group语句的含义. metric既可以作用在整个数据集上,也可以作为bucketing的子聚合作用在每一个“桶”中的数据集上.当然,我们可以把整个数据集合看做一个大“桶”,所有的数据都分配到这个大“桶”中. 1.1.Global聚合 AggregationBuilders .global("agg") .subAggregation(AggregationBuilders.ter…
1.概述 1.1 group语法 df.groupby(self, by=None, axis=0, level=None, as_index: bool=True, sort: bool=True, group_keys: bool=True, squeeze: bool=False, observed: bool=False, dropna=True) 其中 by 为分组字段,由于是第一个参数可以省略,可以按列表给多个.会返回一个groupby_generic.DataFrameGroupB…
Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终端打印SQL语句,脚本调试) 一丶Django的ORM外键操作 通过对象查找 ### 正向查找 # 获得图书对象 book_obj=models.Book.objects.get(pk=1) ret=book_obj.pub #pub是Book表的外键字段,存在Book表中. 通过pub可以拿到所关…
一.行多层索引 1.隐式创建 在构造函数中给index.colunms等多个数组实现(datafarme与series都可以) df的多级索引创建方法类似: 2.显式创建pd.MultiIndex 其中.from_arrays为类似上面的参数,推荐使用简单的from_product函数(会自动进行交叉): 二.列多层索引 列多层索引同理:  三.多层索引操作与切片 1.Series多层索引 使用中括号和loc效果完全一样: 切片,只切第一级索引,与之前一致,需要指定某些指定行时,可以通过iloc…