Differentiation 导数和变化率】的更多相关文章

何为导数 1 : 如何求一条直线上一点的切线? what did we learn in high school about what a tangent(切) line is ? :任意一点上的切线都可以有一个方程 y-y0 = k*(x-x0)来表示. 切线:一种极限是当Q趋近于P.->在一条弧线上由P,Q两点如何确定直线PQ,是切线呢?根据定理可得,当一条直线和一条弧线相交于两点的时候这条直线一定不是切线.所以只有当P和Q重合的时候着一条直线才是切线 XP-XQ=Δx , 只有当Δx ->…
学习机器学习的同学在学习过程中会经常遇到一个问题,那就是对目标函数进行求微分,线性回归这类简单的就不说.复杂的如神经网络类那些求导过程的酸爽.像我还是那种比较粗心的人往往有十导九错,所以说自动求导就十分有必要了,本文主要介绍几种求导的方式.假设我们的函数为\(f(x,y)=x^2y+y+2\),目标是求出偏导\(\frac{\partial{f}}{\partial{x}}\)和\(\frac{\partial{f}}{\partial{y}}\).求导的方式主要分为以下几种 手动求导法(Man…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization) 2015年12月27日 18:51:19 下一步 阅读数 4357更多 分类专栏: 数值优化   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/fangqingan_java/article/details/48946903 概述 在实际应用中,有些目…
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总体逻辑 0x02 训练神经网络 2.1 初始化模型 2.2 压缩数据 2.3 生成优化目标函数 2.4 生成目标函数中的拓扑模型 2.4.1 AffineLayerModel 2.4.2 FuntionalLayerModel 2.4.3 SoftmaxLayerModelWithCrossEntr…
转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学…
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py AUTOGRAD: AUTOMATIC DIFFERENTIATION PyTorch中所有神经网络的核心是autograd包.让我们先简单地看一下这个,然后我们来训练我们的第一个神经网络.autograd包为张量上的所有操作提供自动微分.它是一个按运行定义的框架,这…
一元函数的导数 对于函数\(y=f(x)\),导数可记做\(f'(x_0)\).\(y'|x=x_0\)或\(\frac{dy}{dx}|x=x_0 \).定义如下: \[f'(x_0) = \lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0}\frac{f(x_0+\Delta x) - f(x)}{\Delta x}\] 一阶导数也是一个函数,这个函数的导数称为二阶导数,可以依此递归定义. \[f^{(n…
zh.wikipedia.org/wiki/數值微分 数值微分是数值方法中的名词,是用函数的值及其他已知资讯来估计一函数导数的算法. http://mathworld.wolfram.com/NumericalDifferentiation.html Numerical differentiation is the process of finding the numerical value of a derivative of a given function at a given point…
Sobel 导数 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 Sobel 对图像求导. 如何使用OpenCV函数 Scharr 更准确地计算  核的导数. 原理 Note 以下内容来自于Bradski和Kaehler的大作: Learning OpenCV . 上面两节我们已经学习了卷积操作.一个最重要的卷积运算就是导数的计算(或者近似计算). 为什么对图像进行求导是重要的呢? 假设我们需要检测图像中的 边缘 ,如下图: 你可以看到在 边缘 ,相素值显著的 改变 了.表示这一 改变…