POJ1077 Eight —— A*算法】的更多相关文章

主页面:http://www.cnblogs.com/DOLFAMINGO/p/7538588.html 关于A*算法:g(n)表示从起点到任意节点n的路径花费,h(n)表示从节点n到目标节点路径花费的估计值(启发值),f(n) = g(n)+h(n). A*算法必须满足的条件(能不能满足由所选的h(n)估计方式决定):每次扩展的节点的 f 值 >= 父节点的 f 值. 代码如下: #include <iostream> #include <cstdio> #include…
主页面:http://www.cnblogs.com/DOLFAMINGO/p/7538588.html 代码一:像BFS那样,把棋盘数组放在结构体中. #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <queue> #inclu…
八数码问题也称为九宫问题.(本想查查历史,结果发现居然没有词条= =,所谓的历史也就不了了之了) 在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同.棋盘上还有一个空格,与空格相邻的棋子可以移到空格中.要求解决的问题是: 给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤. 所谓问题的一个状态就是棋子在棋盘上的一种摆法.棋子移动后,状态就会发生改变.解八数码问题就是找出从初状态到目标状态所经过的一系列中间状态.八数码问题一…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3567 Eight II Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 130000/65536 K (Java/Others) Total Submission(s): 3420    Accepted Submission(s): 742 Problem Description Eight-puzzle, which is also…
题目链接:http://poj.org/problem?id=1077 Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33267   Accepted: 14404   Special Judge Description The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you'v…
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的,能够有效的降低磁盘的I/O操作数,因此我们经常看到有许多数据库系统使用B树或B树的变种来储存数据结构:从结构上看,B树的结点可以有很多孩子,从数个到数千个,这通常依赖于所使用的磁盘的单元特性. 如下图,给出了一棵简单的B树. 从图中我们可以发现,如果一个内部结点包含n个关键字,那么结点就有n+1个孩…
Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资料后发现,学习Paxos最好的资料是论文<Paxos Made Simple>,其次是中.英文版维基百科对Paxos的介绍.本文试图带大家一步步揭开Paxos神秘的面纱. Paxos是什么 Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
1. 什么是红黑树 (1) 简介     上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快.     于是我们需要构建出一种"平衡"的二叉搜索树.     红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质     与普通二叉搜索树不…
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列表之前,我们先介绍直接寻址表. 当关键字的全域U(关键字的范围)比较小时,直接寻址是一种简单而有效的技术.我们假设某应用要用到一个动态集合,其中每个元素的关键字都是取自于全域U={0,1,…,m-1},其中m不是一个很大的数.另外,假设每个元素的关键字都不同. 为表示动态集合,我们用一个数组,或称为…
好文集合: 深入浅出React(四):虚拟DOM Diff算法解析 全面理解虚拟DOM,实现虚拟DOM…
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说程序实现,思想很简单). 模式匹配的经典应用:从一个字符串中找到模式字串的位置.如“abcdef”中“cde”出现在原串第三个位置.从基础看起 朴素的模式匹配算法 A:abcdefg  B:cde 首先B从A的第一位开始比较,B++==A++,如果全部成立,返回即可:如果不成立,跳出,从A的第二位开…
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网…
本PPT从JVM体系结构概述.GC算法.Hotspot内存管理.Hotspot垃圾回收器.调优和监控工具六大方面进行讲述.(内嵌iframe,建议使用电脑浏览) 好东西当然要分享,PPT已上传可供下载(点此下载),另外良心推荐阅读<深入理解Java虚拟机JVM高级特性与最佳实践.pdf>(点此下载).…
若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样的任务,所以就好好把基础研究了一下,驱动式学习,目标明确,所以还是比较快去接受和理解,然后写代码实现就好了.今天就带领大家走近TSP问题以及群蚁算法. 机器学习目录:[目录]数据挖掘与机器学习相关算法文章总目录 本文原文地址:群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法 1.关于旅行商(…
前言: 对于SHA安全散列算法,以前没怎么使用过,仅仅是停留在听说过的阶段,今天在看图片缓存框架Glide源码时发现其缓存的Key采用的不是MD5加密算法,而是SHA-256加密算法,这才勾起了我的好奇心,所以趁着晚上没啥事,来学习一下. 其他几种加密方式: Android数据加密之Rsa加密 Android数据加密之Aes加密 Android数据加密之Des加密 Android数据加密之MD5加密 Android数据加密之Base64编码算法 Android数据加密之异或加密算法 SHA加密算…
前言: 前面学习总结了平时开发中遇见的各种数据加密方式,最终都会对加密后的二进制数据进行Base64编码,起到一种二次加密的效果,其实呢Base64从严格意义上来说的话不是一种加密算法,而是一种编码算法,为何要使用Base64编码呢?它解决了什么问题?这也是本文探讨的东西? 其他几种加密方式: Android数据加密之Rsa加密 Android数据加密之Aes加密 Android数据加密之Des加密 Android数据加密之MD5加密 Android数据加密之Base64编码算法 Android…
▓▓▓▓▓▓ 大致介绍 由于最近要考试复习,所以学习js的时间少了 -_-||,考试完还会继续的努力学习,这次用原生的JavaScript实现以前学习的常用的排序算法,有冒泡排序.快速排序.直接插入排序.希尔排序.直接选择排序 ▓▓▓▓▓▓ 交换排序 交换排序是一类在排序过程中借助于交换操作来完成排序的方法,基本思想是两两比较排序记录的关键字,如果发现两个关键字逆序,则将两个记录位置互换,重复此过程,直到该排序列中所有关键字都有序为止,接下来介绍交换排序中常见的冒泡排序和快速排序 ▓▓▓▓▓▓…
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-Means,BIRCH这些一般只适用于凸样本集的聚类相比,DBSCAN既可以适用于凸样本集,也可以适用于非凸样本集.下面我们就对DBSCAN算法的原理做一个总结. 1. 密度聚类原理 DBSCAN是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定.同一类别的样本,他们…
用菜鸟的思维学习算法 -- 马桶排序.冒泡排序和快速排序 [博主]反骨仔 [来源]http://www.cnblogs.com/liqingwen/p/4994261.html  目录 马桶排序(令人作呕的排序) 冒泡排序(面试都要问的算法) 快速排序(见证亚当和夏娃的爱情之旅) 马桶排序(令人作呕的排序) 一.场景:期末考试完了,老师要将同学们的分数从高到低排序.假设班上有 5 名同学,分别考了 5 分.3 分.5 分.2 分和 8 分[满分:10 分],排序后的结果就是 8 5 5 3 2,…
前面几篇博客我们已经陆陆续续的为大家介绍了7种排序方式,今天博客的主题依然与排序算法相关.今天这篇博客就来聊聊基数排序,基数排序算法是不稳定的排序算法,在排序数字较小的情况下,基数排序算法的效率还是比较高的.今天就来聊一下基数排序算法的原理以及代码的具体实现. 一.基数排序算法示意图 下方的基数排序算法的实现是利用"桶"来实现的,首先我们创建10个桶,然后按照基数入桶,基数的取值是从数字的低位到高位以此取值.我们还是以[62, 88, 58, 47, 62, 35, 73, 51, 9…
上篇博客我们主要聊了比较高效的归并排序算法,本篇博客我们就来介绍另一种高效的排序算法:快速排序.快速排序的思想与归并排序类似,都是采用分而治之的方式进行排序的.快速排序的思想主要是取出无序序列中第一个值,然后通过比较将比该值小的元素放到该值的前方,将比该值大的元素放在该值的后方.这样一来该值前方的数据都要比该值小,该值后方的数据都要比该值大.然后再次对前半部分和后边半部分无序的数列进行上述操作,这样不断的操作,无序的序列的规模不断被缩小.等问题的规模被缩小到一定程度后,我们的序列就变的有序了.…
本篇博客中的代码实现依然采用Swift3.0来实现.在前几篇博客连续的介绍了关于查找的相关内容, 大约包括线性数据结构的顺序查找.折半查找.插值查找.Fibonacci查找,还包括数结构的二叉排序树以及平衡二叉树的构建与查找,然后还聊了哈希表的构建与查找.接下来的几篇博客中我们就集中的聊一下常见的集中排序方式,并并给出相应的时间复杂度.本篇博客我们将会详细的介绍冒泡排序.插入排序.希尔排序以及选择排序,下篇博客将继续介绍堆排序.归并排序以及快速排序的相关内容.当然上述内容的代码实现我们依然采用S…
今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,AVL是发明平衡二叉树的两个科学家的名字的缩写,在此就不做深究了.其实平衡二叉树就是二叉排序树的一种,比二叉排序树多了一个平衡的条件.在一个平衡二叉树中,一个结点的左右子树的深度差不超过1. 本篇博客我们就依照平衡二叉树的特点,在创建二叉排序树的同时要保证结点的左右子树的深度差不超过1的规则.当我们往二叉排序树…
今天这篇博客就聊聊几种常见的查找算法,当然本篇博客只是涉及了部分查找算法,接下来的几篇博客中都将会介绍关于查找的相关内容.本篇博客主要介绍查找表的顺序查找.折半查找.插值查找以及Fibonacci查找.本篇博客会给出相应查找算法的示意图以及相关代码,并且给出相应的测试用例.当然本篇博客依然会使用面向对象语言Swift来实现相应的Demo,并且会在github上进行相关Demo的分享. 查找在生活中是比较常见的,本篇博客所涉及的这几种查找都是基于线性结构的查找.也就是说我们的查找表是一个线性表,我…
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的,但是工期不是最优的.因为拓扑序列是一个串行序列,如果按照该序列执行项目,那么就是串行执行的.我们知道在一个项目中的一些子工程是可以并行来完成的,这也就类似我们的多线程.今天我们要解决的问题就是找出一个关键路径,是工期最优并保证工程的完成.什么是关键路径,我们在下方会进行详细介绍. 一.关键路径概述 在聊关键路…
凤鸾宝帐景非常,尽是泥金巧样妆. 曲曲远山飞翠色:翩翩舞袖映霞裳. 梨花带雨争娇艳:芍药笼烟骋媚妆. 但得妖娆能举动,取回长乐侍君王. [摘自<封神演义>纣王在女娲宫上香时题的诗] 一首定场诗完毕,咱们书接上回.上回咱们说到使用基于MA长短周期均线上下穿越的方式对行情进行跟踪.同时也提出该方法的问题,即:当前K线在短时间内出现了类似正弦曲线的波动时,短周期均线和长周期均线会频繁的相互交差.这种情况的问题就是会导致系统进行频繁的交易,如果看官们有过手动交易的经验值,就不难发现,交易的越频繁,可能…
1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好.在"强可学习"和"弱科学习"的概念上来说就是我们通过对多个弱可学习的算法进行"组合提升或者说是强化"得到一个性能赶超强可学习算法的算法.如何地这些弱算法进行提升是关键!AdaBoost算法是其中的一个代表. 2.分类算法提升的思路: 1.找到一个弱分类器,分类器简单,快捷,易操作(如果它本身就很复杂,而且效果还不错,那么进行提升无疑是锦上添花,增加复杂度,甚至上性能并没有得到提升…
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本集合的各个样本点到均值的距离之平均.以一个国家国民收入为例,均值反映了平均收入,而均方差/方差则反映了贫富差距,如果两个国家国民收入均值相等,则标准差越大说明国家的国民收入越不均衡,贫富差距较大.以上公式都是用来描述一维数据量的,把方差公式推广到二维,则可得到协方差公式: 协方差表明了两个随机变量之…
1 排序 排序基本信息 稳定性:排序前大的数在排序后,大的数依然保持不变就是稳定排序,反之不稳定 内外排序:根据待排序的记录是否放在内存里面区分的.诸如:插入排序(直接插入&希尔).交换排序(冒泡&快排).选择排序(简单选择&堆排).归并排序(归并). 算法性能影响:时间性能.辅助空间.算法复杂性(算法本身的复杂度跟时间复杂度区分开). 简单算法:冒泡排序.简单选择排序.直接插入排序 改进算法:希尔排序(不稳定).堆排序(不稳定).归并排序.快排(不稳定) 总之:排序四大类,简单有…