题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足要求时的最小费用 Sol 一道非常不错的网络流,应该不难看出是费用流. 首先进行拆点,把每个点早上和晚上,然后进行连边 从$S$向i连边$(0, r_i)$,表示到了晚上有$r_i$块脏餐巾 从$i'$向$T$连边$(0, r_i)$,表示早上有$r_i$块新餐巾 从$S$向$i'$连边$(p, I…
传送门 不得不说这题真是思路清奇,真是网络流的一道好题,完全没想到网络流的建图还可以这么建 我们把每一个点拆成两个点,分别表示白天和晚上,白天可以得到干净的餐巾(购买的,慢洗的,快洗的),晚上可以得到脏餐巾(之前剩下的,今天用过的) 1.每一天,我们都从源点向晚上连边,容量为餐巾,费用$0$,表示可以免费获得这么多餐巾,从早上想汇点连边,容量为餐巾,费用为$0$,表示可以免费提供这么多餐巾,流满时表示当天餐巾够用 2.从每一天晚上向第二天晚上连边,容量$inf$,费用$0$,表示可以把脏餐巾留到…
(题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1251 洛谷 P1251 餐巾计划问题 输入输出样例 输入样例#1: 3 1 7 5 11 2 2 3 1 输出样例#1: 134 说明 N<=2000 ri<=10000000 p,f,s<=10000 时限4s 题解:拆点再跑费用流呗,第i天拆成Xi(脏的餐巾)和Yi(干净的餐巾).对于…
题目链接 最小费用最大流. 每天拆成两个点,早上和晚上: 晚上可以获得\(r_i\)条脏毛巾,从源点连一条容量为\(r_i\),费用为0的边. 早上要供应\(r_i\)条毛巾,连向汇点一条容量为\(r_i\)吗,费用为0的边. 每天可以买毛巾,晚上向第二天早上连一条费用为\(p\),容量为\(inf\)的边. 可以送快洗,晚上向\(m\)天之后的早上连费用\(f\),容量\(inf\)的边 可以送慢洗,晚上向\(n\)天之后的早上连费用\(s\),容量\(inf\)的边 脏毛巾可以留到第二天晚上…
原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; inline char gc() { static char now[1<<16],*S,*T; if(S==T) {T=(S=now)+fread(now,1,1<…
题解 最小费用最大流 n和m是反着的 首先, \[ ans = \sum{cost[i][j]}*k \] 其中,\(k\)为它在当前技术人员那里,排倒数第\(k\)个修 我们可以对于每个技术人员进行拆点, 对于每个技术人员的各个点,表示倒数第几次修 然后每个人连向技术人员,显然花费是根据连的点来算的 然后就是二分图带权最小匹配了 我只会Dinic Code #include<bits/stdc++.h> #define LL long long #define RG register usi…
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含四个正整数ui.vi.wi.fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi. 输出格式: 一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用. 输入输出样例 输入样例#…
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数\(N.M.S.T\),分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来\(M\)行每行包含四个正整数\(u_i.v_i.w_i.f_i\),表示第i条有向边从\(u_i\)出发,到达\(v_i\),边权为\(w_i\)(即该边最大流量为\(w_i\)),单位流量的费用为\(f_i\). 输出格式: 一行,包…
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含四个正整数ui.vi.wi.fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi. 输出格式: 一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用. 输入输出样例 输入样例#…
建图细节比较多,对于每个点i,拆成i和i',i表示用的餐巾,i'表示脏餐巾,连接: (s,i,r[i],p)表示在这一天买新餐巾 (i,t,r[i],0)表示这一天用了r[i]的餐巾 (s,i+n,r[i],0)表示这一天有r[i]条脏餐巾 if(i+ft<=n) ins(i+n,i+ft,inf,fp)注意特判,表示送去快洗,inf是因为这一天的脏餐巾不止这一天剩下的,还有之前剩下的 if(i+st<=n) ins(i+n,i+st,inf,sp)注意特判,表示送去慢洗,inf是因为这一天的…