tf.Session()、tf.InteractiveSession()】的更多相关文章

tf.Session()和tf.InteractiveSession()的区别 官方tutorial是这么说的: The only difference with a regular Session is that an InteractiveSession installs itself as the default session on construction. The methods Tensor.eval() and Operation.run() will use that sess…
链接如下: http://stackoverflow.com/questions/41791469/difference-between-tf-session-and-tf-interactivesession 英文 Question: Questions says everything, for taking sess= tf.Session() and sess=tf.InteractiveSession() which cases should be considered for what…
1.tf.Variable() tf.Variable(initializer,name) 功能:tf.Variable()创建变量时,name属性值允许重复,检查到相同名字的变量时,由自动别名机制创建不同的变量. 参数: initializer:初始化参数: name:可自定义的变量名称 举例: import tensorflow as tf v1=tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='v1') v2=t…
tf.add().tf.subtract().tf.multiply().tf.div()函数介绍和示例 1. tf.add() 释义:加法操作 示例: x = tf.constant(2, dtype=tf.float32, name=None) y = tf.constant(3, dtype=tf.float32, name=None) z = tf.add(x, y) # 加法操作 X = tf.constant([[1, 2, 3], [4, 5, 6]], dtype=tf.floa…
前言:最近做一个实验,遇到TensorFlow变量作用域问题,对tf.name_scope().tf.variable_scope()等进行了较为深刻的比较,记录相关笔记:tf.name_scope().tf.variable_scope()是两个作用域函数,一般与两个创建/调用变量的函数tf.variable() 和tf.get_variable()搭配使用.常用于:1)变量共享:2)tensorboard画流程图进行可视化封装变量.通俗理解就是:tf.name_scope().tf.vari…
官方tutorial是这么说的: The only difference with a regular Session is that an InteractiveSession installs itself as the default session on construction. The methods Tensor.eval() and Operation.run() will use that session to run ops. 翻译一下就是:tf.InteractiveSes…
1.tf.reduce_max函数的作用:计算张量的各个维度上的元素的最大值.例子: import tensorflow as tfmax_value = tf.reduce_max([1, 3, 2])with tf.Session() as sess: max_value = sess.run(max_value) print(max_value)结果为3    2.tf.sequence_mask的作用是构建序列长度的mask标志 . 例子: import tensorflow as tf…
函数原型: tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)   Defined in tensorflow/python/ops/state_ops.py.   将 value 赋值给 ref,并输出 ref,即 ref = value:   这使得需要使用复位值的连续操作变简单   Defined in tensorflow/python/framework/tensor_shape.py. Arg…
tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable(创建变量)与tf.get_variable(创建变量 或 复用变量) TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 变量可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.…
tf.add_to_collection(name, value)  用来把一个value放入名称是'name'的集合,组成一个列表; tf.get_collection(key, scope=None) 用来获取一个名称是'key'的集合中的所有元素,返回的是一个列表,列表的顺序是按照变量放入集合中的先后;   scope参数可选,表示的是名称空间(名称域),如果指定,就返回名称域中所有放入'key'的变量的列表,不指定则返回所有变量. tf.add_n(inputs, name=None),…