TensorFlow 的softmax实例理解】的更多相关文章

对于理论,简单的去看一下百度上的说明,这里直接上实例,帮助理解. # softmax函数,将向量映射到0-1的范围内,P=exp(ax)/(sum(exp(a1x)+exp(a2x)+...)) inputdata = tf.Variable([[0.2, 0.1, 0.9]], dtype=np.float32) output = tf.nn.softmax(inputdata) with tf.Session() as sess: sess.run(tf.global_variables_i…
TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类.数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本.样本标注信…
先说下自己开发的实例. 最近在使用 Spring Cloud Config 做分布式配置中心(基于 SVN/Git),当所有服务启动后,SVN/Git 中的配置文件更改后,客户端服务读取的还是旧的配置,并不能实时读取(配置信息会缓存在客户端),Spring Boot 提供了一种方式进行更新(通过spring-boot-starter-actuator监控模块),然后 Post 访问客户端服务的/refresh接口(也可以命令执行curl -X POST http://worker2:8115/r…
Softmax Regression Chapter Basics generate random Tensors Three usual activation function in Neural Network Softmax funcion Softmax Regression Logistic Regression Softmax Regression Examples Basics generate random Tensors Three usual activation funct…
一.<莫烦Python>学习笔记: TensorFlow从入门到理解(一):搭建开发环境[基于Ubuntu18.04] TensorFlow从入门到理解(二):你的第一个神经网络 TensorFlow从入门到理解(三):你的第一个卷积神经网络(CNN) TensorFlow从入门到理解(四):你的第一个循环神经网络RNN(分类例子) TensorFlow从入门到理解(五):你的第一个循环神经网络RNN(回归例子) TensorFlow从入门到理解(六):可视化梯度下降…
一个实例理解Lingo的灵敏性分析     线性规划问题的三个重要概念:    最优解就是反应取得最优值的决策变量所对应的向量.    最优基就是最优单纯形表的基本变量所对应的系数矩阵如果其行列式是非奇异的,则该系数矩阵为最优基.    最优值就是最优的目标函数值.    Lingo的灵敏性分析是研究当目标函数的系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变.灵敏性分析给出的只是最优基保持不变的充分条件,而不一定是必要条件.下面是一道典型的例题.    一奶制品加工厂用牛奶…
https://www.zhihu.com/question/23765351   因为这里不太方便编辑公式,所以很多公式推导的细节都已经略去了,如果对相关数学表述感兴趣的话,请戳这里的链接Softmax的理解与应用 - superCally的专栏 - 博客频道 - http://CSDN.NET ---------- Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好…
对tf.nn.softmax的理解 转载自律者自由 最后发布于2018-10-31 16:39:40 阅读数 25096  收藏 展开 Softmax的含义:Softmax简单的说就是把一个N*1的向量归一化为(0,1)之间的值,由于其中采用指数运算,使得向量中数值较大的量特征更加明显.如图所示,在等号左边部分就是全连接层做的事. W是全连接层的参数,我们也称为权值:W是全连接层的参数,是个T*N的矩阵,这个N和X的N对应,T表示类别数,比如你进行手写数字识别,就是10个分类,那么T就是10.…
Spark Job-Stage-Task实例理解 基于一个word count的简单例子理解Job.Stage.Task的关系,以及各自产生的方式和对并行.分区等的联系: 相关概念 Job:Job是由Action触发的,因此一个Job包含一个Action和N个Transform操作: Stage:Stage是由于shuffle操作而进行划分的Task集合,Stage的划分是根据其宽窄依赖关系: Task:最小执行单元,因为每个Task只是负责一个分区的数据 处理,因此一般有多少个分区就有多少个T…
softmax函数的作用   对于分类方面,softmax函数的作用是从样本值计算得到该样本属于各个类别的概率大小.例如手写数字识别,softmax模型从给定的手写体图片像素值得出这张图片为数字0~9的概率值,这些概率值之和为1.预测的结果取最大的概率表示的数字作为这张图片的分类. 可以从下面这张图理解softmax x1,x2,x3代表输入的值,b1,b2,b3代表类别1,2,3的偏置量,是因为输入的值可能存在无关的干扰量. 将上图写成等式 \[ \left[\begin{matrix}tem…