洛谷P2216 理想的正方形】的更多相关文章

洛谷P2216 理想的正方形 题目链接 思路: 直接暴力显然不可行,可以发现每一个矩形向右边扩展时是一列一列增加,于是可以想到单调队列,用数组来维护当前每列的最大值.因为行也有限制,所以还要用一个单调队列来维护行的信息. 做法大概就是每次扩展一行,然后求出每一列当前的最大值,之后再一列一列来搞. 详见代码吧: #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1005, M = 1…
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数.每行相邻两数之间用一空格分隔. 输出格式: 仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值. 输入输出样例 输入样例#1: 复制 5 4 2 1 2 5 6 0 17 16 0 16 17 2 1 2 1…
二维单调队列 先横向跑一边单调队列,记录下每一行长度为n的区间的最值 在纵向跑一边单调队列,得出结果 注意,mi要初始化为一个足够大的数 #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; int init() { int rv = 0, fh = 1; char c = getchar(); while(c &l…
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一列求出长度为n的前面算出来的最大值的最大值,前面算出来的最小值的最小值.如果直接做是n的三次方,但是用单调队列优化后就是n方的. #include <algorithm> #include <iterator> #include <iostream> #include &l…
洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\),边长是\(k\)的正方形的最佳答案. 转移方程很简单,但是你一定会妥妥的\(\texttt{TLE}\). 那么我们怎么做呢? 往倍增的方向去想,设\(f[i][j][k]\)表示左上角为\((i,j)\),边长为\(2^j\)的正方形的最佳答案. 那么状态就这么转移: \[mx[i][j]=m…
P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数.每行相邻两数之间用一空格分隔. 输出格式: 仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值. 输入输出样例 输入样例#1: 5 4 2 1 2 5 6 0 1…
理想的正方形 [题目描述] 一个a*b的矩阵,从中取一个n*n的子矩阵,使所选矩阵中的最大数与最小数的差最小. 思路: 二维的滑动窗口 对于每行:用一个单调队列维护,算出每个长度为n的区间的最大值和最小值,分别存在两个数组fmin和fmax中,fmax[i][j]表示第i行区间[j,j+n-1]的最大值. 对于每列:用一个单调队列维护,算出fmax和fmin数组中纵列每个长度为n的区间的最大值和最小值,分别存在两个数组ffmin和ffmax中, ffmax[i][j]表示以(i,j)为左上端点的…
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1[i][j]=min(x[i][j],x[i][j+1],...,x[i][j+n-1])$$q1[i][1]=min(x[i][1],x[i][2],...,x[i][n])$$q1[i][2]=min(x[i][2],x[i][3],...,x[i][n+1])$类似滑动窗口,因此直接枚举行,对…
题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理,将其压缩为一个(n-k+1)*m的矩形:再对列进行处理,最终压缩为一个(n-k+1)*(m-k+1)的矩形,枚举最大与最小之差,更新答案即可. 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=1e3+1; 4 int…
    算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为$3$个整数,分别表示$a,b,n$的值. 第二行至第$a+1$行每行为$b$个非负整数,表示矩阵中相应位置上的数.每行相邻两数之间用一空格分隔. 输出格式: 仅一个整数,为$a\times b$矩阵中所有“$n\times n$正方形区域中的最大整数和最小整数的差值”…