sparkSQL、dataframe】的更多相关文章

SparkSql SparkSql是专门为spark设计的一个大数据仓库工具,就好比hive是专门为hadoop设计的一个大数据仓库工具一样. 特性: .易整合 可以将sql查询与spark应用程序进行无缝混合使用,同时可以使用java.scala.python.R语言开发代码 .统一的数据源访问 sparksql可以使用一种相同的方式来对接外部的数据源 val dataframe=SparkSession.read.格式("该格式文件的路径") .兼容hive 可以通过sparksq…
http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 空值填充:http://spark.apache.org/docs/1.5.0/api/python/_modules/pyspark/sql/dataframe.html spark 将dataframe数据写入Hive分区表:http://www.cnblogs.com/longjshz/p/5414051.html #df22.select("…
一.SparkSQL发展: Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容      Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by swapping out the physical execution engine part of Hive).这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码基线使得Shark很难优化和维护.随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分…
一.saprkSQL背景 Spark 1.0版本开始,推出了Spark SQL.其实最早使用的,都是Hadoop自己的Hive查询引擎:但是后来Spark提供了Shark:再后来Shark被淘汰,推出了Spark SQL.Shark的性能比Hive就要高出一个数量级, 而Spark SQL的性能又比Shark高出一个数量级. 最早来说,Hive的诞生,主要是因为要让那些不熟悉Java,无法深入进行MapReduce编程的数据分析师,能够使用他们熟悉的关系型数据库的SQL模型,来操作HDFS上的数…
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利 2.三者都有惰性机制,在进行创建.转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,计算情况下,如果代码里面有创建.转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如 va…
Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFrame API. 本文中的代码基于Spark-1.6.2的文档实现. 一.DataFrame对象的生成 Spark-SQL可以以其他RDD对象.parquet文件.json文件.hive表,以及通过JDBC连接到其他关系型数据库作为数据源来生成DataFrame对象.本文将以MySQL数据库为数据源,…
Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFrame API. 本文中的代码基于Spark-1.6.2的文档实现. 一.DataFrame对象的生成 Spark-SQL可以以其他RDD对象.parquet文件.json文件.Hive表,以及通过JDBC连接到其他关系型数据库作为数据源来生成DataFrame对象.本文将以MySQL数据库为数据源,…
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以有许多分区(partitions),每个分区又拥有大量的记录(records). 五个特征: dependencies:建立RDD的依赖关系,主要rdd之间是宽窄依赖的关系,具有窄依赖关系的rdd可以在同一个stage中进行计算. partition:一个rdd会有若干个分区,分区的大小决定了对这个…
SparkSQL和DataFrame SparkSQL简介 Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用.它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快! SparkSQL的特性 1.易整合 2.统一的数据访问方式 3.兼容Hive 4.标准的数据连接 DataFrames简介 与RDD类似,DataFrame也是一个分布式数据容器.然而DataFrame更像传统数据库的二维表格…
简述 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同:DataFrame多了数据的结构信息,即schema.RDD是分布式的 Java对象的集合.DataFrame是分布式的Row对象的集合. 作者:jacksu来源:简书|2016-03-21 10:40   RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了…