keras中TimeDistributed】的更多相关文章

From the offical code: class TimeDistributed(Wrapper): """This wrapper applies a layer to every temporal slice of an input. The input should be at least 3D, and the dimension of index one will be considered to be the temporal dimension. Con…
TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个由16个维度组成的10个向量的序列.该层的批输入形状然后(32, 10, 16). 可以这么理解,输入数据是一个特征方程,X1+X2+...+X10=Y,从矩阵的角度看,拿出未知数,就是10个向量,每个向量有16个维度,这16个维度是评价Y的16个特征方向. TimeDistributed层的作用就…
TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个由16个维度组成的10个向量的序列.该层的批输入形状然后(32, 10, 16). 可以这么理解,输入数据是一个特征方程,X1+X2+...+X10=Y,从矩阵的角度看,拿出未知数,就是10个向量,每个向量有16个维度,这16个维度是评价Y的16个特征方向. TimeDistributed层的作用就…
keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16.Xception.ResNet50.InceptionV3 4个. VGG19在keras中的定义: def VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) include_top: 是否包含最后的3个全连接层 weights: 定…
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 一. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 二. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能…
tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. keras的模型保存分为多种情况. 一.不保存模型只显示大概结构 model.summary() 这个函数会打印模型结构,但是仅仅是打印到控制台. keras.utils.plot_model() 使用graphviz中的dot.exe生成网络结构拓扑图 二.保存模型结构 keras.models.…
用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下面的函数 例如: sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', opt…
在使用RNN based model处理序列的应用中,如果使用并行运算batch sample,我们几乎一定会遇到变长序列的问题. 通常解决变长的方法主要是将过长的序列截断,将过短序列用0补齐到一个固定长度(例如max_length). 最后由n个sample组成的dataset能形成一个shape == (n, max_length)的矩阵.然后可以将这个矩阵传递到后续的模型中使用. 然而我们可以很明显,如果用0或者其他整数补齐,势必会影响到模型自身(莫名其妙被输入很多个0,显然是有问题的).…
在深度学习中,数据短缺是我们经常面临的一个问题,虽然现在有不少公开数据集,但跟大公司掌握的海量数据集相比,数量上仍然偏少,而某些特定领域的数据采集更是非常困难.根据之前的学习可知,数据量少带来的最直接影响就是过拟合.那有没有办法在现有少量数据基础上,降低或解决过拟合问题呢? 答案是有的,就是数据增强技术.我们可以对现有的数据,如图片数据进行平移.翻转.旋转.缩放.亮度增强等操作,以生成新的图片来参与训练或测试.这种操作可以将图片数量提升数倍,由此大大降低了过拟合的可能.本文将详解图像增强技术在K…
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a - y →0,而训练的本质就是寻找损失函数最小值的过程. 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数.对于深度学习而言,交叉熵函数要优于均方差函数,原因在于交叉熵函数配合输出层的激活函数如sigmoid或softmax函数能更快地加速深度学习的训…