ML(4.3): R Random Forest】的更多相关文章

随机森林模型是一种数据挖掘模型,常用于进行分类预测.随机森林模型包含多个树形分类器,预测结果由多个分类器投票得出. 决策树相当于一个大师,通过自己在数据集中学到的知识对于新的数据进行分类.俗话说得好,一个诸葛亮,玩不过三个臭皮匠.随机森林就是希望构建多个臭皮匠,希望最终的分类效果能够超过单个大师的一种算法.随机森林的分类效果(即错误率)与以下两个因素有关: ①森林中任意两棵树的相关性:相关性越大,错误率越大. ②森林中每棵树的分类能力:每棵树的分类能力越强,整个森林的错误率越低. 减小特征选择个…
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支. 一棵决策树的组成:根节点.非叶子节点(决策点).叶子节点.分支 算法分为两个步骤:1. 训练阶段(建模) 2. 分类阶段(应用) 熵的概念 设用P(X)代表X发生的概率,H(X)代表X发生的不确定性,则有:P(X)越大,H(X)越小:P(X)越小,H(X)越大. 信息熵的一句话解释是:消除不确定性的程度…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share Toby,项目合作QQ:231469242 随机森林就是由多个决策树组合而成的投票机制. 理解随机森林,要先了解决策树 随机森林是一个集成机器学习算法…
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性.最初,我是在参加校外竞赛时接触到随机森林算法的.最近几年的国内外大赛,包括2013年百度校园电影推荐系统大赛.2014年阿里巴巴天池大数据竞赛以及Kaggle数据科学竞赛,参赛者对随机森林的使用占有相当高的比例.此外,据我的个人了解来看,一大部…
周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门资料: [关于决策树的基础知识参考:http://blog.csdn.net/holybin/article/details/22914417] 在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,所以叫做随机森林.随机森林中的决策树之间是没有关联的,当测试数据进入随机森…
Today, I want to show how I use Thomas Lin Pederson's awesome ggraph package to plot decision trees from Random Forest models. I am very much a visual person, so I try to plot as much of my results as possible because it helps me get a better feel fo…
There is a plethora of classification algorithms available to people who have a bit of coding experience and a set of data. A common machine learning method is the random forest, which is a good place to start. This is a use case in R of the randomFo…
# coding: utf-8 # In[1]: import pandas as pdimport numpy as npfrom sklearn import treefrom sklearn.svm import SVCfrom sklearn.grid_search import GridSearchCVfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import classificatio…
阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Python实现 8 参考内容 回到顶部 1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性.最初,我是…
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Python实现 8 参考内容 回到顶部 1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做…