Storm架构和编程模型总结】的更多相关文章

1. 编程模型 DataSource:外部数据源 Spout:接受外部数据源的组件,将外部数据源转化成Storm内部的数据,以Tuple为基本的传输单元下发给Bolt Bolt:接受Spout发送的数据,或上游的bolt的发送的数据.根据业务逻辑进行处理.发送给下一个Bolt或者是存储到某种介质上.介质可以是Redis可以是mysql,或者其他. Tuple:Storm内部中数据传输的基本单元,里面封装了一个List对象,用来保存数据. StreamGrouping:数据分组策略 7种:shuf…
storm的基本概念别人总结的, https://blog.csdn.net/pickinfo/article/details/50488226 编程模型最关键最难就是实现局部聚合的业务逻辑聚合类实现Aggregator接口重写方法aggregate,聚合使用存储中间聚合过程状态的类,本地hashmap的去重逻辑还有加入redis后进行的一些去重操作,数据的持久(判断三天内的带播控量) public class SaleSum implements Aggregator<SaleSumState…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3974417.html 本文主要介绍如何在Storm编程实现与Kafka的集成 一.实现模型 数据流程: 1.Kafka Producter生成topic1主题的消息 2.Storm中有个Topology,包含了KafkaSpout.SenqueceBolt.KafkaBolt三个组件.其中KafkaSpout订阅了topic1主题消息,然后发送 给SenqueceBolt加工处理,最后数据由Kafka…
1 流式计算 流式计算:数据实时产生.实时传输.实时计算.实时展示 代表技术:Flume实时获取数据.Kafka/metaq实时数据存储.Storm/JStorm实时数据计算.Redis实时结果缓存.持久化存储(mysql). 一句话总结:将源源不断产生的数据实时收集并实时计算,尽可能快的得到计算结果. 2 Storm是什么 Storm 是用来实时处理数据,特点:低延迟.高可用.分布式.可扩展.数据不丢失,提供简单容易理解的接口,便于开发. 3 Storm 与Hadoop的区别 Storm用于实…
离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据.MapReduce批量计算数据.Hive批量计算数据.azkaban/oozie任务调度 流式计算 流式计算:数据实时产生.数据实时传输.数据实时计算.实时展示 代表技术:Flume实时获取数据.Kafka/metaq实时数据存储.Storm/JStorm实时数据计算.Redis实时结果缓存.持久化存储(mysql). 一句话总结:将源源不断产生的数据实时收集并实…
一.流式计算概念 利用分布式的思想和方法,对海量“流”式数据进行实时处理,源自业务对海量数据,在“时效”的价值上的挖掘诉求,随着大数据场景应用场景的增长,对流式计算的需求愈发增多,流式计算的一般架构图如下: Flume获取数据-->Kafka传递数据-->Strom计算数据-->Redis保存数据 二.storm介绍 Apache Storm是一个分布式实时大数据处理系统.Storm设计用于在容错和水平可扩展方法中处理大量数据.它是一个流数据框架,具有最高的摄取率.Storm是无状态的,…
系统架构.自底向上,设备层.网络层.数据操作层.图计算层.API层.应用层.核心层,设备层.网络层.数据操作层.图计算层.最下层是网络通信层和设备管理层.网络通信层包括gRPC(google Remote Procedure Call Protocol)和远程直接数据存取(Remote Direct Memory Access,RDMA),分布式计算需要.设备管理层包手包括TensorFlow分别在CPU.GPU.FPGA等设备上的实现.对上层提供统一接口,上层只需处理卷积等逻辑,不需要关心硬件…
一.Storm编程模型 二.Storm组件流程图…
 Storm工作原理: Storm是一个开源的分布式实时计算系统,常被称为流式计算框架.什么是流式计算呢?通俗来讲,流式计算顾名思义:数据流源源不断的来,一边来,一边计算结果,再进入下一个流. 比如一般金融系统一直不断的执行,金融交易.用户全部行为都记录进日志里,日志分析出站点运维.猎户信息.海量数据使得单节点处理只是来.所以就用到分布式计算机型,storm 是当中的典型代表之中的一个,一般应用场景是:中间使用一个消息队列系统如kafka,先将消息缓存起来,storm 中有非常多的节点,分布…
dataSource:数据源,生产数据的东西 spout:接收数据源过来的数据,然后将数据往下游发送 bolt:数据的处理逻辑单元.可以有很多个,基本上每个bolt都处理一部分工作,然后将数据继续往下游的bolt发送 storm不会保存数据,也不会生产数据,只是一个数据的搬运工 tuple:元组的概念,可以理解为一个数组,或者一个集合,里面可以封装很多东西,数据从上游往下游发送,都是封装在tuple里面了 topology:spout与bolt组织到一起,形成一个topology 注意,配置文件…