主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部分参数.加载指定参数 tensorflow从已经训练好的模型中,恢复(指定)权重(构建新变量.网络)并继续训练(finetuning) Tensorflow 模型持久化 Model Persistence…
模型的保存与加载一般有三种模式:save/load weights(最干净.最轻量级的方式,只保存网络参数,不保存网络状态),save/load entire model(最简单粗暴的方式,把网络所有的状态都保存起来),saved_model(更通用的方式,以固定模型格式保存,该格式是各种语言通用的) 具体使用方法如下: # 保存模型 model.save_weights('./checkpoints/my_checkpoint') # 加载模型 model = keras.create_mod…
import tensorflow as tf #保存模型 saver = tf.train.Saver() saver.save(sess, "e://code//python//test//package_test//model.ckpt", global_step=step) #加载读取模型 with tf.Session() as sess: new_saver=tf.train.import_meta_graph('checkout\\model.ckpt-3500.meta…
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分为两个文件,一个是.data-00000-of-00001 文件,一个是 .index 文件 checkpoint文件:文本文件,记录了最新保持的5个模型文件列表 tf中模型保存使用 tf.train.Saver类来保存模型.使用方式: 1. 在Session外生成一个模型保存对象 saver =…
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分为两个文件,一个是.data-00000-of-00001 文件,一个是 .index 文件 checkpoint文件:文本文件,记录了最新保持的5个模型文件列表 tf中模型保存使用 tf.train.Saver类来保存模型.使用方式: 1. 在Session外生成一个模型保存对象 saver =…
怎样让通过训练的神经网络模型得以复用? 本文先介绍简单的模型保存与加载的方法,后续文章再慢慢深入解读. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: saver.py #Brief: #Author: frank #Mail: frank0903@aliyun.com #Created Time:2018-06-22 22:12:52 ##################…
上一遍博文提到 有些场景下,可能只需要保存或加载部分变量,并不是所有隐藏层的参数都需要重新训练. 在实例化tf.train.Saver对象时,可以提供一个列表或字典来指定需要保存或加载的变量. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: restore.py #Brief: #Author: frank #Mail: frank0903@aliyun.com #Crea…
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1)需要重新建立图谱,来实现模型的加载 2)独家加载模型 模型的保存与训练加载: tf.train.Saver(<var_list>,<max_to_keep>) var_list: 指定要保存和还原的变量,作为一个dict或者list传递 max_to_keep: 指示要保留的最大检查…
持久化-Word库加载项劫持 利用wll.xll和dll的特性来利用的 重点利用office word的信任文件来进行加载恶意代码…
jQuery+zTree加载树形结构菜单 由于项目中需要设计树形菜单功能,经过一番捣腾之后,终于给弄出来了,所以便记下来,也算是学习zTree的一个总结吧. zTree的介绍: 1.zTree 是利用 JQuery 的核心代码,实现一套能完成大部分常用功能的 Tree 插件 2.zTree v3.0 将核心代码按照功能进行了分割,不需要的代码可以不用加载 3.采用了 延迟加载 技术,上万节点轻松加载,即使在 IE6 下也能基本做到秒杀 4.兼容 IE.FireFox.Chrome.Opera.S…
前面的两篇博文 第一篇:简单的模型保存和加载,会包含所有的信息:神经网络的op,node,args等; 第二篇:选择性的进行模型参数的保存与加载. 本篇介绍,只保存和加载神经网络的计算图,即前向传播的过程. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################ #File Name: save_restore.py #Brief: #Author: frank #Mail: frank0903@aliy…
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说明一下:即根据每一行X中的一个数,从W中取出对应行的128个数据,比如X[1, 3]个数据是3062,即从W中的第3062行取出128个数据 import numpy as np import tensorflow as tf data = np.array([[2, 1], [3, 4], [5,…
需求: 一直写的代码都是从加载数据,模型训练,模型预测,模型评估走出来的,但是实际业务线上咱们肯定不能每次都来训练模型,而是应该将训练好的模型保存下来 ,如果有新数据直接套用模型就行了吧?现在问题就是怎么在实际业务中保存模型,不至于每次都来训练,在预测. 解决方案: 机器学习-训练模型的保存与恢复(sklearn)python /模型持久化 /模型保存 /joblib /模型恢复在做模型训练的时候,尤其是在训练集上做交叉验证,通常想要将模型保存下来,然后放到独立的测试集上测试,下面介绍的是Pyt…
1.保存模型参数(gen-我自己的模型名字) torch.save(self.gen.state_dict(), os.path.join(self.gen_save_path, 'gen_%d.pth'%step)) 2.加载模型参数 self.gen.load_state_dict(torch.load(os.path.join(self.gen_save_path, 'gen_%d.pth'%step),map_location='cpu')) 3.打印查看模型参数 pthfile = r…
导入包 import tensorflow as tf from tensorflow import keras 加载数据 tensorflow可以调用keras自带的datasets,很方便,就是有一点让人不爽的是下载需要fq,而这个代理不太方便开,所以这里我把所有数据都下载下来了,并上传到了坚果云,方便大家下载. 下载连接 (访问密码:yDmqHd) 下载好之后,把输入放入C:\Users\用户名\.keras\datasets里面,如果没有datasets文件夹,就新建一个,然后直接把数据…
 让模型接着上次保存好的模型训练,模型加载 #实例化模型.优化器.损失函数 model = MnistModel().to(config.device) optimizer = optim.Adam(model.parameters(),lr=0.01) if os.path.exists("./model/mnist_net.pt"): model.load_state_dict(torch.load("./model/mnist_net.pt")) optimi…
http://blog.csdn.net/brainkick/article/details/7176405 前言: 服务器程序通常都会通过相应的配置文件来控制服务器的工作.很多情况下,配置文件会经常地被修改,在使其生效时,我们都希望不重启程序,不影响服务器的正常服务.所以所谓的配置文件”热加载”就成了一项非常重要的功能,而这方面,nginx给我们树立了非常好的榜样,值得我们去学习和借鉴. 分析: 在nginx正常服务时,我们在nginx的程序程序目录执行./nginx –sreload,来实现…
我也是刚接触WP编程没几个月,就是在这段时间一直闲着没事,然后又比较喜欢WP这款系统,就学习了WP这方面的开发言语,自学是很困难的,掌握这方面的资料不多,很初级,就是自己在网上找资料学习过程中,看到别人的分享让我学到了很多,所以我也想分享一下自己的经验,另一方面也希望和大家交流交流,并得到大家的指点. 好了,不多说了,现在开始进入正题吧: ListView这个控件用的很多,而且功能很强大,在我练习开发两个小软件的之前,我以为很简单没什么内容,谁知在开发过程中,才知道它的功能之多,现在就简单说其中…
一.类加载器结构 1.引导类加载器(bootstrap class loader) 它用来加载Java的核心库(JAVA_HOME/jre/lib/rt.jar),是用原声代码来实现的,并不继承自java.lang.Classloader. 加载扩展类和应用程序类加载器.并制定指定的父类加载器. 2.扩展类加载器(extensions class loader) 用来加载Java的扩展库(JAVA_HOME/JRE/EXT/*.jar),Java虚拟机的实现会提供一个扩展库目录.该加载器在此目录…
saver = self.tf_instance.train.Saver() self.sess = self.tf_instance.Session(config=sess_config, graph=graph) self.sess.run(self.tf_instance.global_variables_initializer()) # 在restore时加入这行代码 self.tf_instance.reset_default_graph() saver.restore(self.se…
在 parameters.py 中,定义了各类参数. # training data directory TRAINING_DATA_DIR = './data/' # checkpoint directory CHECKPOINT_DIR = './training_checkpoints/' # training details BATCH_SIZE = 16 BUFFER_SIZE = 128 EPOCHS = 15 在 numpy_dataset.py 中,创建了 5000 组训练数据集…
import tensorflow as tf import numpy as np # ##Save to file # W = tf.Variable([[4,5,6],[7,8,9]],dtype=tf.float32,name="weight") # b = tf.Variable([[2,5,8]],dtype=tf.float32,name="biases") # # init = tf.initialize_all_variables() # # sa…
from tensorflow.python.keras.preprocessing.image import load_img,img_to_array from tensorflow.python.keras.models import Sequential,Model from tensorflow.python.keras.layers import Dense,Flatten,Input import tensorflow as tf from tensorflow.python.ke…
收集来源:http://cs.fangjia.com/zoushi/…
生成检查点文件(chekpoint file),扩展名.ckpt,tf.train.Saver对象调用Saver.save()生成.包含权重和其他程序定义变量,不包含图结构.另一程序使用,需要重新创建图形结构,告诉TensorFlow如何处理权重.生成图协议文件(graph proto file),二进制文件,扩展名.pb,tf.tran.write_graph()保存,只包含图形结构,不包含权重,tf.import_graph_def加载图形. 模型存储,建立一个tf.train.Saver(…
目前darknet框架下的模型训练都是在C环境下训练的,难免较为晦涩,如果能将模型转换到Tensorflow环境下完成模型的训练,在将训练好的权重转为Darknet可以识别的权重部署到实际应用中.这样就可以将算法的训练和实际部署分开! 1.将Darknet框架下的.cfg与.weights 转为Tensorflow框架下的.cpkt模型 先clone这个项目,用于darknet模型转tensorflow https://github.com/Linzmin1927/DW2TFcd 到DW2TF目…
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import tensorflow as tf # 用 tf.session.run() 里 feed_dict 参数设置占位 tensor, 如果传入 feed_dict的数据与 tensor 类型不符,就无法被正确处理 x = tf.placeholder(tf.string) y = tf.placehol…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in…
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据. 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta…