GPU 显存释放】的更多相关文章

我们在使用tensorflow 的时候, 有时候会在控制台终止掉正在运行的程序,但是有时候程序已经结束了,nvidia-smi也看到没有程序了,但是GPU的内存并没有释放,那么怎么解决该问题呢? 首先执行下面的命令: fuser -v /dev/nvidia* #查找占用GPU资源的PID 因为我们只有一块显卡,所以显示如下图所示:  可以看到我们的nvidia0上还有一个python 2.7的PID 然后我们执行: kill -9 pid 然后再执行nvidia-smi就可以看到内存已经被释放…
一.当程序没有运行,但GPU仍被占用, 可通过nvidia-smi查看,被占用的pid是什么 或通过sudo fuser -v /dev/nvidia* #查找占用GPU资源的PID 然后采用kill -9 (PID)来杀掉运行的进程…
笔者在ubuntu上跑Tensorflow的程序的时候,中途使用了Win+C键结束了程序的进行,但是GPU的显存却显示没有释放,一直处于被占用状态. 使用命令 nvidia-smi 显示如下 两个GPU程序都在执行中,实际上GPU:0已经被笔者停止了,但是GPU没有释放,进程还在继续,所以只有采用暴力手段了,将进程手动关闭掉,进程编号如图中红线部分,由于笔者在两个GPU跑的程序一样,很难从程序名称上找到自己,却可以从GPU:num上找到自己的PID. 关闭命令如下: sudo kill -9 P…
如何解决python进程被kill掉后GPU显存不释放的问题 1 重新开一个shell,然后输入: ps aux|grep user_name|grep python.所有该用户下的python程序就会显示出来(很多在用watch命令都不会显示的进程在这里可以看到): 2 然后再一个个用kill命令清理 两台Linux系统之间传输文件的几种方法 连接服务器shell窗口关闭导致程序中断,让程序在linux后台运行nohup - CUDA_VISIBLE_DEVICES=1 nohup pytho…
前言 今早我想用多块GPU测试模型,于是就用了PyTorch里的torch.nn.parallel.DistributedDataParallel来支持用多块GPU的同时使用(下面简称其为Dist). 程序运行时,由于程序中其他部分的代码(与Dist无关的代码)出现了错误,导致程序退出.这次使用Dist时没有考虑和处理这种程序崩溃的情况,因此在程序退出前没有用Dist关闭生成的所有进程,最终导致本次进程运行后GPU显存未释放(经观察,发现是由于没有用Dist关闭所有进程,导致程序运行后还有一部分…
很多用户反馈说终止程序之后,显存依然被占用,这里我们提供了两种解决方案,帮助用户解决这个问题. nvidia-smi查看 我们可以先用如下命令 nvidia-smi 查看一下当前GPU进程情况. _ GPU:GPU 编号: Name:GPU 型号: Persistence-M:持续模式的状态.持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这里显示的是off的状态: Fan:风扇转速,从0到100%之间变动: Temp:温度,单位是摄氏度: Perf:性能状态,从P0到P12,P…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter 1 终端执行程序时设置使…
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本文目录 1 终端执行程序时设置使用的GPU 2 python代码中设置使用的GPU 3 设置tensorflow使用的显存大小 3.1 定量设置显存 3.2 按需设置显存 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflo…
全局存储器,即普通的显存,整个网格中的随意线程都能读写全局存储器的任何位置. 存取延时为400-600 clock cycles  很easy成为性能瓶颈. 訪问显存时,读取和存储必须对齐,宽度为4Byte.假设没有正确的对齐,读写将被编译器拆分为多次操作,减少訪存性能. 多个warp的读写操作假设可以满足合并訪问,则多次訪存操作会被合并成一次完毕.合并訪问的条件,1.0和1.1的设备要求较严格,1.2及更高能力的设备上放宽了合并訪问的条件. 1.2及其更高能力的设备支持对8 bit.16 bi…
用只有2个G的显卡跑数据就需要在训练之前先把无关进程杀掉,防止跑到一半显存满了 nvidia-smi:显示当前GPU中的线程 kill -9 PID:输入PID以结束线程…