数据仓库建模与ETL的实践】的更多相关文章

一.Data仓库的架构 Data仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将Data按特定的模式进行存储所建立起来的关系型Datcbase,它的Data基于OLTP源Systam.Data仓库中的Data是细节的.集成的.面向主题的,以OLAPSystam的分析需求为目的. Data仓库的架构模型包括了星型架构与雪花型架构两种模式.星型架构的中间为事实表,四周为维度表,类似星星;而相比较而言,雪花型架构的中间为事实表,两边的维度表可以再有其关联子表,从而表达了清晰…
一.Data仓库的架构 Data仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将Data按特定的模式进行存储所建立起来的关系型Datcbase,它的Data基于OLTP源Systam.Data仓库中的Data是细节的.集成的.面向主题的,以OLAPSystam的分析需求为目的. Data仓库的架构模型包括了星型架构与雪花型架构两种模式.星型架构的中间为事实表,四周为维度表,类似星星;而相比较而言,雪花型架构的中间为事实表,两边的维度表可以再有其关联子表,从而表达了清晰…
一.Data仓库的架构 Data仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将Data按特定的模式进行存储所建立起来的关系型Datcbase,它的Data基于OLTP源Systam.Data仓库中的Data是细节的.集成的.面向主题的,以OLAPSystam的分析需求为目的. Data仓库的架构模型包括了星型架构与雪花型架构两种模式.星型架构的中间为事实表,四周为维度表,类似星星;而相比较而言,雪花型架构的中间为事实表,两边的维度表可以再有其关联子表,从而表达了清晰…
数据分析系统的总体架构分为四个部分 —— 源系统.数据仓库.多维数据库.客户端(图一:pic1.bmp) 其中,数据仓库(DW)起到了数据大集中的作用.通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次(当然是自动的).这个过程,我们称之为ETL过程. 那么,今天,我们就来谈一谈:如何搭建数据仓库,在这个过程中都应该遵循哪些方法和原则:然后介绍一些项目实践中的技巧. 一.数据仓库的架构 数据仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将…
但是,在实施数据集成的过程中,由于不同用户提供的数据可能来自不同的途径,其数据内容.数据格式和数据质量千差万别,有时甚至会遇到数据格式不能转换或数据转换格式后丢失信息等棘手问题,严重阻碍了数据在各部门和各应用系统中的流动与共享.因此,如何对数据进行有效的集成管理已成为增强企业商业竞争力的必然选择. 数据仓库的自动ETL研究 下载PDF阅读器 数据仓库的建设是为了能支持决策分析.数据质量是数据仓库项目的生命线所在,也关系到数据分析.数据挖掘的质量.在进行决策分析或数据挖掘时,需要全面.正确地集成数…
什么是Hive? 我来一个短而精悍的总结(面试常问) 1:hive是基于hadoop的数据仓库建模工具之一(后面还有TEZ,Spark). 2:hive可以使用类sql方言,对存储在hdfs上的数据进行分析和管理. Hive 是建立在 Hadoop 上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL ),这是一种可以存储.查询和分析存储在 Hadoop 中的大规模数据的机制.Hive 定义了简单的类 SQL 查询语言,称为 HQL ,它允许熟悉 SQL 的用户查询数…
为了实现数据仓库中的更加高效的数据处理,今天和小黎子一起来探讨ETL系统中的增量抽取方式.增量抽取是数据仓库ETL(数据的抽取(extraction).转换(transformation)和装载(loading))实施过程中需要重点考虑的问题.ETL抽取数据的过程中,增量抽取的效率和可行性是决定ETL实施成败的关键问题之一,做过数据建模的小伙伴都知道ETL中的增量更新机制比较复杂,采用何种机制往往取决于源数据系统的类型以及对增量更新性能的要求.今天我们只重点对各种方法进行对比分析,从而总结各种机…
数据仓库建模 — 星型模式Example of Star Schema 数据仓库建模 — 雪片模式Example of Snowflake Schema 节省存储空间 一定程度上的范式 星形 vs.雪花型 Which one is better? 长期以来的争论 两种观点各有支持者 争论在继续…… 目前看来,大部分更加倾向于星型 支持星形维度的论点 事实表总会是很大的,在维度表上节省的空间相对来说是很小的 增加了数据模型的复杂度 查询操作概念上更复杂了 从数据仓库到多维数据库的加载时间会更长 因…
简介 国内关于Data Vault的信息很少,所以决定写点什么,纯粹都是自己在这个行业10多年的摸爬滚打.不过为了效率,尽量做到简短,直接上干货.对于各个细节大家有不同的理解欢迎来讨论. 数据仓库建模的方法有哪些. 首先最经典的是数据仓库Inmon基于3NF的方法.这个方法知道概念的人很多,但是实际用的很少,也不建议你去了解更多,因为目前在国内的招聘网站上你会很少找到这个. 其次是Kimball的维度建模方法,这个基本上做过数据仓库的都用过,比如事实表和维度表,基于这种理论也可以构建数据立方体方…
摘要:如何搭建数据仓库,在这个过程中都应该遵循哪些方法和原则,项目实践中有哪些技巧. 一.数据仓库的“心脏” 首先来谈谈数据模型.模型是现实世界特征的模拟和抽象,比如地图.建筑设计沙盘,飞机模型等等. 而数据模型DataModel是现实世界数据特征的抽象. 在数据仓库项目建设中,数据模型的建立具有重要的意义,客户的业务场景,流程规则,行业知识都体现在通过数据模型表现出来,在业务人员和技术人员之间搭建起来了一个沟通的桥梁,所以在国外一些数据仓库的文献中,把数据模型称之为数据仓库的心脏“TheHea…