py-faster-rcnn 训练自己的数据】的更多相关文章

本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于caffe). (亲测有效,记录经历两天的吐血经历) https://www.cnblogs.com/elitphil/p/11527732.html caffe学习二:py-faster-rcnn配置运行faster_rcnn_end2end-VGG_CNN_M_1024 (Ubuntu16.04)…
之前实现过faster rcnn, 但是因为各种原因,有需要实现一次,而且发现许多博客都不全面.现在发现了一个比较全面的博客.自己根据这篇博客实现的也比较顺利.在此记录一下(照搬). 原博客:https://blog.csdn.net/char_QwQ/article/details/80980505 文章代码连接:https://github.com/endernewton/tf-faster-rcnn 显卡:TiTan RTX/Qudro K2200(丽台k2200).--我分别在两张显卡都…
1 . 怎么处理那些pyx和.c .h文件 在lib下有一些文件为.pyx文件,遇到不能import可以cython 那个文件,然后把lib文件夹重新make一下. 遇到.c 和 .h一样的操作. 2 . 训练自己的数据时最好不要使用pretrained_model, 由于训练的种类不一样,可能出现loss = inf 和loss = nan,-nan的情况. 3 . 数据源的检查: 在做自己的voc格式的数据源时,请检查.xml文件内容,看是否与groudtruth一致,不然训练无法收敛.(防…
参考博客:::https://www.cnblogs.com/Dzhen/p/6845852.html 非常全面的解读参考:::https://blog.csdn.net/DaVinciL/article/details/81812454 下面我和大家一起从训练最开始学习作者如何将原始数据读入并通过RoIDataLayer转化成网络训练所需的数据的总体过程. 训练从./tools/train_net.py开始,进入主函数,我们只关注跟数据有关的模块. 首先是imdb, roidb = combi…
如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installation-sufficient-for-the-demo 先用提供的 model 自己测试一下效果嘛... 按照官网安装教程,安装基本需求. Installation (sufficient for the demo) Clone the Faster R-CNN repository # Make…
看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后下午我就想我要解决掉yml加载不上的问题.就是easydict版本太低了,可以改代码,也可以从新安装.conda install -c verydeep easydict. 参考:https://github.com/rbgirshick/py-faster-rcnn/issues/201 还有一个…
http://blog.csdn.net/zy1034092330/article/details/62044941 py-faster-rcnn训练自己的数据:流程很详细并附代码 https://huangying-zhan.github.io/2016/09/22/detection-faster-rcnn Summary This post records my experience with py-faster-rcnn, including how to setup py-faster…
采用Pascal VOC数据集的组织结构,来构建自己的数据集,这种方法是faster rcnn最便捷的训练方式…
声明:每人都有自己的理解,动手实践才能对细节更加理解! 一.算法理解 此处省略一万字.................. 二.训练及源码理解 首先配置: 在./lib/utils文件下....运行 python setup.py build_ext --inplace python setup.py build_ext install Go to ./lib/utils文件夹下...运行 python setup.py build_ext --inplace 数据介绍:检测图片当中的手写体区域,…
真是好事多磨啊,计算机系统依然是14.04,而cuda依然是8.0,唯一不同的是时间不一样,下载的各种库版本有差别,GPU的driver不一样. 但是这样就出问题了,py-faster rcnn的lib库编译时总是提示错误. 网上搜了开始的相关帖子都提示说是gcc的版本问题,但是我后来问了一下在原来单位的同事,gcc的版本也没问题,版本和原来用的一样.后来我把cython卸载(0.26.1),从新安装旧版本(0.19.1)依然同样的错误,我没有继续追究版本问题.昨天看到github上的一个帖子说…
function script_faster_rcnn_demo() close all; clc; clear mex; clear is_valid_handle; % to clear init_key run(fullfile(fileparts(fileparts(mfilename('fullpath'))), 'startup')); %% -------------------- CONFIG -------------------- opts.caffe_version = '…
http://blog.csdn.net/u014696921/article/details/60321425…
转载:http://blog.csdn.net/sinat_30071459/article/details/51332084  Faster-RCNN+ZF用自己的数据集训练模型(Python版本) 说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同. Faster-RCNN源码下载地址: Matlab版本:https://github.com/ShaoqingRen/faster_rcnn Python版本:https://github.com/rbgirshick/…
https://blog.csdn.net/qq_27637315/article/details/78849756 https://blog.csdn.net/qq_21089969/article/details/69422624 faster rcnn报错:TypeError: slice indices must be integers or None or have an __index__ method 2017年12月20日 09:48:22 上大蛋蛋 阅读数:5079 标签: f…
前言 最近利用Faster R-CNN训练数据,使用ZF模型,效果无法有效提高.就想尝试对ZF的网络结构进行改造,记录下具体操作. 一.更改网络,训练初始化模型 这里为了方便,我们假设更换的网络名为LeNet. 首先,需要先训练在Faster R-CNN中用来初始化网络的模型:LeNet.caffemodel. 这里比较简单,直接用完整的LeNet去训练一部分数据(VOC2007,VOC2012均可),数据初始大小resize为224*224,即可得到初始化网络的模型. 二.在Faster R-…
转自: https://zhuanlan.zhihu.com/p/31426458 faster rcnn的基本结构 Faster RCNN其实可以分为4个主要内容: Conv layers.作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps.该feature maps被共享用于后续RPN层和全连接层. Region Proposal Networks.RPN网络用于生成region proposa…
转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初始化参数:args = parse_args() 采用的是Python的argparse 主要有–net_name,–gpu,–cfg等(在cfg中只是修改了几个参数,其他大部分参数在congig.py中,涉及到训练整个网络). cfg_from_file(args.cfg_file) 这里便是代用…
转自:https://zhuanlan.zhihu.com/p/31426458 经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显. <img…
https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgirshick/py-faster-rcnn Faster RCNN paper : https://arxiv.org/abs/1506.01497 Bound box regression详解 : http://download.csdn.net/download/zy1034092330/994…
Faster R-CNN教程 最后更新日期:2016年4月29日 本教程主要基于python版本的faster R-CNN,因为python layer的使用,这个版本会比matlab的版本速度慢10%,但是准确率应该是差不多的. 目前已经实现的有两种方式: Alternative training Approximate joint training 推荐使用第二种,因为第二种使用的显存更小,而且训练会更快,同时准确率差不多甚至略高一点. Contents 配置环境 安装步骤 Demo 建立自…
注意:本文主要是学习用,发现了一个在faster rcnn训练流程写的比较详细的博客. 大部分内容来自以下博客连接:https://blog.csdn.net/weixin_37203756/article/details/79926543 以下为正文: 第一点:首先要明白faster rcnn目录下都有哪些文件夹,都有什么用处. 文件夹: data ----------------> 存放的是用于训练的数据集,一般我们用的都是voc2007的数据集,还有一个很重要的文件夹是imagenet_w…
感谢知乎大神的分享 https://zhuanlan.zhihu.com/p/31426458 Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显. Faster RCNN其实可以分为4个主要…
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文地址:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 论文地址:Object detect…
1. 通过代码理解faster-RCNN中的RPN http://blog.csdn.net/happyflyy/article/details/54917514 2. faster rcnn详解 R-CNN物体检测http://www.neurta.com/node/155 http://blog.csdn.net/u011746554/article/details/74999010 3. 源码解析 http://www.cnblogs.com/zf-blog/category/908817…
https://zhuanlan.zhihu.com/p/21412911 rcnn需要固定图片的大小,fast rcnn不需要 rcnn,sppnet,fast rcnn,ohem,faster rcnn,rfcn都属于基于region proposal(候选区域)的目标检测方法,即预先找出图中目标可能出现的位置. fast rcnn:在特征提取层的最后一层卷积后加入roi pooling layer,损失函数使用多任务损失函数(multi-task loss),将边框回归直接加入到CNN网络…
将 RCN 中下面 3 个独立模块整合在一起,减少计算量: CNN:提取图像特征 SVM:目标分类识别 Regression 模型:定位 不对每个候选区域独立通过 CN 提取特征,将整个图像通过 CNN 提取特征,然后从 CNN 的特征图中根据 Selection Search 的候选区域通过 Rol Pooling 层提取区域特征 Faster R-CNN训练步骤: 预训练一个用于分类的CNN 使用CNN的特征图作为输出,端到端的fine-tune RPN(region proposal ne…
因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net/wjx2012yt/article/details/52197698#quote 2.在CPU下训练数据集,需要对py-faster-rcnn内的roi_pooling_layer和smooth_L1_loss_layer改为CPU版本, 并重新编译.这位博主对其进行了修改,可直接进行替换:htt…
官方给出的faster R-CNN的源码python版:https://github.com/rbgirshick/py-faster-rcnn 先来分析一下 整个文件,根目录下的文件 caffe-fast-rcnn 存放caffe框架 data 下面有两个文件夹,第一个是demo,放了5张用于测试的图片.第二个是scripts,里面放了三个脚本文件,分别为下载在VOC2007上训练的Faster R-CNN模型.下载预训练的分类模型(ZF或者VGG16) 和设置数据集的符号链接的脚本文件. e…
这周看完faster-rcnn后,应该对其源码进行一个解析,以便后面的使用. 那首先直接先主函数出发py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py 我们在后端的运行命令为 python  ./py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py --gpu0--net_nameZF--weightsdata/imagenet_models/ZF.v2.caffemodel--imdbvoc_2007…
Fast RCNN训练自己的数据集 (2修改读写接口) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fast-rcnn-train-another-dataset 这是我在github上修改的几个文件的链接,求星星啊,求星星啊(原谅我那么不要脸~~) 这里楼主讲解了如何修改Fast RCNN训练自己的数据集,首先请确保你已经安装好了Fast RCN…