【BZOJ2287】消失之物 [分治][DP]】的更多相关文章

消失之物 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了. 她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M…
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1138  Solved: 654[Submit][Status][Discuss] Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了.她把答案记为 Count…
虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要填满容量为 k 的背包 , 则 ans( i , k ) = ∑ f( i - 1, h ) * g( i + 1 , k - h ) ( 0 <= h <= k ) 这样就转化为经典的背包问题了 f( x , k ) = f( x - 1 , k ) + f( x - 1 , k - w( x…
题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了.她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格. Sol Orz hzwer 这题可能有三种做法吧.. 第一种是分治背包 第二种是NTT优化暴力 第三种是$O(nm)$的神仙d…
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了.她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格. 输入 第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最…
传送门 f[i][j]表示前i个物品,容量为j的方案数c[i][j]表示不选第i个物品,容量为j的方案数两个数组都可以压缩到一维 那么f[i][j] = f[i - 1][j] + f[i - 1][j - w[i]] (不放i与放i) c数组的转移分多种情况 1.j < w[i]时,说明当前物品放不开,那么c[i][j] = f[n][j] 2.j >= w[i],c[i][j] = f[n][j] - c[i][j - w[i]] 因为c[i][j]表示不选物品i,容量为j的方案数,等于总…
这题貌似是个权限题qwq,我是用离线题库+本地数据包测的 题目大意: 给你\(n\)个体积分别为\(w[i]\)的物品和容积\(m\),问你将每一件物品分别去掉之后,拼出\(1\)~\(m\)中每一个体积的方案数的个位数分别是多少,将答案矩阵输出. 输入样例: 3 2 1 1 2 输出样例: 11 11 21 考虑先做一次01背包,得到\(f\)数组,然后去掉不合法的方案.怎么去掉呢,首先枚举第\(i\)件物品,令\(g[x]\)表示不用第\(i\)件物品拼成体积为\(x\)的方案数,则\(g\…
2287: [POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?" -- 这是经典的问题了.她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格. Input 第1行:两个整数 N (…
bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid,arr)用右边的物品更新,solve(mid+1,r,arr)同理. \(f(n)=2*f(\frac{n}{2})+(r-l+1)*m\) 复杂度为\(O(nmlog{n})\) 缺点最短路也是这样,用\(floyd\) 代码 #include <bits/stdc++.h> using na…
[BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了.她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格. Input 第1行:两个整数 N (1 ≤ N …
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方案数. 注释:$1\le n,val_i\le 2\cdot 10^3$. 想法:只需要用取模瞎**容斥一下就行了. Code: #include <iostream> #include <cstdio> #include <cstring> #include <al…
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][Status] Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了.她把答案记为 Count(i, x) ,想要…
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 657  Solved: 382[Submit][Status][Discuss] Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了.她把答案记为 Count(…
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 986  Solved: 572[Submit][Status][Discuss] Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了.她把答案记为 Count(…
题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包DP就好 即:f[i][j]表示前i个物品装满容量为j的背包的方案数. 转移也很简单 f[i][j]=f[i-1][j]+f[i-1][j-w[i]] (i:1~n,j:1~m) (即选和不选的问题) 初始化 f[i][0]=1 (i:[0~n]) (如果背包容量为0,无论如何都有且只有一种方案将其…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4518 [题目大意] 给出一个数列,分成m段,求方差最小,答案乘上m的平方. [题解] 化简式子可以发现,就是求将数列分成m段,最小化和的平方和.设dp[i][j]表示处理到第i段,已经用了前j个数的最小代价,我们可以得到dp[i][j]=min(dp[i-1][k]+(s[j]-s[k])2),由于决策单调,可以分治DP. [代码] #include <cstdio> typede…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3507 [题目大意] 将长度为n的数列分段,最小化每段和的平方和. [题解] 根据题目很容易得到dp[j]=min(dp[k]+(s[j]-s[k])2),因为是从前往后转移,且决策单调,因此在CDQ分治的同时进行分治DP即可. [代码] #include <cstdio> typedef long long LL; const int N=500005; int n,M,t; LL f[N],…
正解:点分治/dp 解题报告: 传送门! 这题有两个做法,都是我不擅长的就都说下好了QAQ 首先这题一看到就会想到点分治? 也确实可以用点分治,那就直接用点分治鸭 每次求出到当前根距离余数为0,1,2的点的数量x,y,z 然后它的贡献就是x*x+2*y*z 然后就做完了,,, 晚上放代码QAQ 然后港下dp方法,,, 就直接树形dp,记录f[i][0/1/2]:i的子树内距离为0/1/2的个数 over 同晚上放代码QAQ 然后说一下这题有一个要注意的就是可以是选的两个点可以是同一个点 #inc…
显然有决策单调性,但由于逆序对不容易计算,考虑分治DP. solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y].暴力计算出(l+r)/2的决策位置s,两边递归下去继续操作.solve(k,x,s,l,mid-1),solve(k,s,y,mid+1,r). 注意到每个位置每层只会被一个区间遍历到,加上树状数组在线更新逆序对的复杂度,总复杂度为$O(kn\log^2n)$ #include<cstdio> #include<al…
目录 链接 思路 代码 链接 P4141 消失之物 思路 f[N];//表示删掉物品后能出现容积为i的方案数 a[N];//单纯0-1背包的方案数asd 那么就先求出a[i]来,然后转移就是 if(j>=v[i]) f[j]=(a[j]-f[j-v[i]]+10)%10; else f[j]=a[j]%10; 代码 #include<iostream> #include<cstdio> #include<algorithm> #include<cmath&g…
题目の传送门~ 题目大意: 将\(n\)个蛋糕分成恰好\(k\)份, 求每份中包含的蛋糕的种类数之和的最大值. 这题有两种做法. 第一种是线段树优化dp, 我还没有考虑. 另一种就是分治+主席树. 然后如果看到分治+主席树的话 可以看成是两道题的二合一~ 不过ADAMOLD正解应该是有\(O(nk)\)做法的吧, 我的\(O(nklogn)\)分治好像被卡了一点常数QwQ 首先我们可以非常容易的看出这题要用dp和状要用到的状态转移方程 \[ f[i][j]=max{f[i-1][k]+d(k+1…
原文链接http://www.cnblogs.com/zhouzhendong/p/8684027.html 题目传送门 - BZOJ2287 题意 有$n$个物品,第$i$个物品的体积为$w_i$. 令$cnt_{i,j}$表示不取第$i$个物品,占用$j$体积的方案总数. 每一个物品只能取或者不取. 让你对于每一个$i,j(1\leq i\leq n,1\leq j\leq m)$输出$cnt_{i,j}$. $n,m\leq 2\times 10^3$ 题解 这题有两种做法,时间复杂度不同…
容斥做法: 首先n^2搞出f[i][j]第i个物品,j体积的方案数. 去除每个物品贡献: 设个g[i][j]表示当i不选,j体积方案数(注意不是此时的范围相对于全局,而不是1---i) 那么我们用到一些容斥的思想 g[i][j]=f[n][j]-g[i][j-w[i]] 因为g[i][j-w[i]]即可表示当i选时的方案数(都是相对于全局的) 而且注意枚举顺序,我们要用当前g[i]的状态更新之后个g[i]的状态, 而且在j<w[i]的情况下g[i][j]=f[n][j] 注意取模..... 1…
(上不了p站我要死了) 今天听了 doggu神 讲了这道题的另一种做法,真是脑洞大开.眼界大开.虽然复杂度比黄学长的要大一点,但不总结一下简直对不起这神思路. 方法1:黄学长的做法(点这里) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?" – 这是经典的问题了.她把答案记为 Count(i, x) ,想要得到所有1 <…
题解: 1.以前见过类似的,可以cdq分治 当l=r时就是还有一个剩余 这样时间是nmlogn的 空间是mlogn 2.首先我们可以dp出表示出j的方案数 令g[i][j]表示不能选i,表示出j的方案数 考虑一下怎么转移 g[i][j+w[i]]=f[i][j+w[i]]-g[i][j] 这个表示的是,j+w[i]的方案数可以由总方案数-放了i的方案数 这样是nm的…
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i]] #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; #define max…
题意:给出$n$个物品的体积和最大背包容量$m$,求去掉一个物品$i$后,装满体积为$w\in [1,m]$背包的方案数. 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?” — 这是经典的问题了.她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格. 输入:第1行:两个整数 N (…
题目传送门 昨天晚上学长讲了这题,说是什么线段树分治,然后觉得不可做,但那还不是正解,然后感觉好像好难的样子. 由于什么鬼畜的分治不会好打,然后想了一下$O(nm)$的做法,想了好长时间觉得这题好像很像大力容斥.然后疯狂yy 正经题解: $O(n^2m)$的解法很好想,就是一个个枚举,但是显然时间吃不消,在观察题目,根据zzh学长的根据题目核心性质猜测法(雾 我们可以考虑容斥因为他题目的限制条件就是每次去掉一个物体,那么就可以先$O(nm)$处理出没有限制条件的总方案数,然后单步容斥,枚举每次去…
暴力:暴力枚举少了哪个,下面套一个01背包 f[i][j]表示到了i物品,用了j容量的背包时的方案数,f[i][j]=f[i-1][j]+f[i-1][j-w[i]]O(n^3) 优化:不考虑消失的,先跑一个01背包, 定义g[i][j]表示i消失时,容量为j的方案数,g[i][j]=f[n][j]-不合法的 逆着过来就是g[i][j]-=g[i][j-w[i] #include<iostream> #include<cstring> #include<cstdio>…
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<string> #include<cmath> #include<ctime> #include<queue> #include<s…