sklearn学习笔记之开始】的更多相关文章

简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算. 使用sklearn.linear_model.LinearRegression进行线性回归 sklearn对Data Mining的各类算法已经有了较好的封装,基本可以使用fit.predict.score来训练.评价模型,并使用模型进…
Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful supervised learning methods, which constructs a decision tree model, which will be used to make predictions. The main advantage of this model is that a huma…
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using a dataset that can be retrieved from within scikit-learn. This dataset consists of around 19,000 newsgroup messages from 20 different topics ranging…
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's start by importing and printing its description import sklearn as sk import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fe…
用Bagging优化模型的过程:1.对于要使用的弱模型(比如线性分类器.岭回归),通过交叉验证的方式找到弱模型本身的最好超参数:2.然后用这个带着最好超参数的弱模型去构建强模型:3.对强模型也是通过交叉验证的方式找到强模型的最好超参数(比如弱模型的数量) 对于Bagging.RandomForest.Boosting这些组合算法,默认是用的弱模型是决策树,但是可以通过base_estimator参数调整. np.linspace() 创建等比数列,生成(start,stop)区间指定元素个数nu…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病态数据的拟合要强于最小二乘法. 使用sklearn.linear_model.Ridge进行岭回归 一个简单的例子 from sklearn.linear_model import Ridge clf = Ridge(alpha=.5) X = [[0,0],[0,0],[1,1]] y = [0,…
简介   自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了.scikit-learn简称sklearn,支持包括分类.回归.降维和聚类四大机器学习算法.还包含了特征提取.数据处理和模型评估三大模块.  sklearn是Scipy的扩展,建立在NumPy和matplotlib库的基础上.利用这几大模块的优势,可以大大提高机器学习的效率.  sklearn拥有着完善的文档,上手容易,具有着丰富的API,在学术界颇受欢迎.sklearn已经封装了大量的机器学习算法,…
make_blobs方法: sklearn.datasets.make_blobs(n_samples=100,n_features=2,centers=3, cluster_std=1.0,center_box=(-10.0,10.0),shuffle=True,random_state=None) make_blobs函数是为聚类产生数据集,产生一个数据集和相应的标签n_samples:表示数据样本点个数,默认值100n_features:是每个样本的特征(或属性)数,也表示数据的维度,默认…
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 最近tensorflow团队出了一个model项目,和这个课程无关,但是可以参考 框架: TensorFlow 谷歌出品的基于Pytho…