传送门 解析 代码: #include<bits/stdc++.h> #define ri register int using namespace std; typedef long long ll; #define add(a,b) ((a)+(b)>=mod?(a)+(b)-mod:(a)+(b)) #define dec(a,b) ((a)>=(b)?(a)-(b):(a)-(b)+mod) #define mul(a,b) ((ll)(a)*(b)%mod) inline…
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html https://www.cnblogs.com/Mychael/p/9216906.html 注意取模那里的 NTT 范围就是模数的次数: 各处注意一下对系数数组取模(超出的位置赋0). 代码如下: #include<iostream> #include<cstdio> #include&l…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
传送门 ddpddpddp模板题. 题意简述:给你一棵树,支持修改一个点,维护整棵树的最大带权独立集. 思路: 我们考虑如果没有修改怎么做. 貌似就是一个sbsbsb树形dpdpdp,fi,0f_{i,0}fi,0​表示不选iii的最大值,fi,1f_{i,1}fi,1​表示选iii的最大值. 那么可以这样从iii的儿子vvv转移过来: fp,0+=max{fv,0,fv,1},fp,1+=fv,0f_{p,0}+=max\{f_{v,0},f_{v,1}\},f_{p,1}+=f_{v,0}f…
传送门 题意简述:支持在某个历史版本上修改某一个位置上的值,访问某个历史版本上的某一位置的值. 思路: 用主席树直接维护历史版本即可. 代码: #include<bits/stdc++.h> #define ri register int using namespace std; inline int read(){ int ans=0,w=1; char ch=getchar(); while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();} whil…
传送门 如同题目所描述的一样,这是一道板题. 题意简述:给你一个数组g1,2,...ng_{1,2,...n}g1,2,...n​并定义f0=1,fi=∑j=1ifi−jgjf_0=1,f_i=\sum_{j=1}^if_{i-j}g_jf0​=1,fi​=∑j=1i​fi−j​gj​,让你求f0,1,...,nf_{0,1,...,n}f0,1,...,n​ 解析 代码 : #include<bits/stdc++.h> #define ri register int #define add…
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ x^n)\] \[f^2(x)g^2(x)-2f(x)g(x)+1\equiv 0\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv 1\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv f(x)g'(x)…
传送门 ODTODTODT水题. 题意:有一个字母序列,支持区间赋值,查询区间某个字母的数量,区间按字母序排序. 思路: 可以开262626棵线段树搞过去,然而也可以用ODTODTODT秒掉. 如果用ODTODTODT排序操作可以直接上桶排感觉快到飞起. 不会ODTODTODT的点这儿 代码: #include<bits/stdc++.h> #define ri register int #define fi first #define se second using namespace st…