首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
神经网络优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam
】的更多相关文章
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
神经网络优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam
1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新: 优点: cost fuction若为凸函数,能够保证收敛到全局最优值:若为非凸函数,能够收敛到局部最优值 缺点: 由于每轮迭代都需要在整个数据集上计算一次,所以批量梯度下降可能非常慢 训练数较多时,需要较大内存 批量梯度下降不允许在线更新模型,例如新增实例. Stochastic G…
Task6.PyTorch理解更多神经网络优化方法
1.了解不同优化器 2.书写优化器代码3.Momentum4.二维优化,随机梯度下降法进行优化实现5.Ada自适应梯度调节法6.RMSProp7.Adam8.PyTorch种优化器选择 梯度下降法: 1.标准梯度下降法:GD每个样本都下降一次,参考当前位置的最陡方向迈进容易得到局部最优,且训练速度慢 2.批量下降法:BGD不再是一次输入样本调整一次,而是一批量数据后进行调整,模型参数的调整更新与全部输入样本的代价函数的和有关,即下山前掌握附近地势,选择最优方向. 3.随机梯度下降法SGD在一批数…
优化方法:SGD,Momentum,AdaGrad,RMSProp,Adam
参考: https://blog.csdn.net/u010089444/article/details/76725843 1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新: 优点: cost fuction若为凸函数,能够保证收敛到全局最优值:若为非凸函数,能够收敛到局部最优值 缺点: 由于每轮迭代都需要在整个数据集上计算一次,所以…
各种优化方法总结比较(sgd/momentum/Nesterov/adagrad/adadelta)
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. Batch gradient descent 梯度更新规则: BGD 采用整个训练集的数据来计算 cost function 对参数的梯度: 缺点: 由于这种方法是在一次更新中,就对整个数据集计算梯度,所以计算起来非常慢,遇到很大量的数据集也会非常棘手,而且不能投入新数据实时更新模型. 我们会事先定义一个迭代次数 epoc…
神经网络优化算法:梯度下降法、Momentum、RMSprop和Adam
最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费): https://mooc.study.163.com/smartSpec/detail/1001319001.htm 神经网络最基本的优化算法是反向传播算法加上梯度下降法.通过梯度下降法,使得网络参数不断收敛到全局(或者局部)最小值,但是由于神经网络层…
优化器,SGD+Momentum;Adagrad;RMSProp;Adam
Optimization 随机梯度下降(SGD): 当损失函数在一个方向很敏感在另一个方向不敏感时,会产生上面的问题,红色的点以“Z”字形梯度下降,而不是以最短距离下降:这种情况在高维空间更加普遍. SGD的另一个问题:损失函数容易卡在局部最优或鞍点(梯度为0)不再更新.在高维空间鞍点更加普遍 当模型较大时SGD耗费庞大计算量,添加随机均匀噪声时SGD需要花费大量的时间才能找到极小值. SGD+Momentum: 带动量的SGD,基本思想是:保持一个不随时间变化的速度,并将梯度估计添加到这个速度…
优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam)
优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam) 2019年05月29日 01:07:50 糖葫芦君 阅读数 455更多 分类专栏: 算法 深度学习 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/yinyu19950811/article/details/90476956 文章目录 优化方法概述 1.整体…
几种优化方法的整理(SGD,Adagrad,Adadelta,Adam)
参考自: https://zhuanlan.zhihu.com/p/22252270 常见的优化方法有如下几种:SGD,Adagrad,Adadelta,Adam,Adamax,Nadam 1. SGD SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: 缺点: 1. 选择合适的learning rate 较难,对所有参数更新使用同样的learning rate. 2. 容易收敛到局部最优,并且在某些情况下可能被困在鞍点. 2. Momentum…
神经网络优化算法如何选择Adam,SGD
之前在tensorflow上和caffe上都折腾过CNN用来做视频处理,在学习tensorflow例子的时候代码里面给的优化方案默认很多情况下都是直接用的AdamOptimizer优化算法,如下: optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost) 1 但是在使用caffe时solver里面一般都用的SGD+momentum,如下: base_lr: 0.0001 momentum: 0.9 weight_dec…
机器学习中几种优化算法的比较(SGD、Momentum、RMSProp、Adam)
有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速度慢,一个 epoch 只能更新一次模型参数. SGD 就是用来解决这个问题的,以每个样本的梯度作为更新方向,更新次数更频繁.但有两个缺点: 更新方向不稳定.波动很大.因为单个样本有很大的随机性,单样本的梯度不能指示参数优化的大方向. 所有参数的学习率相同,这并不合理,因为有些参数不需要频繁变化,而…
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(转)
转自: https://zhuanlan.zhihu.com/p/22252270 ycszen 另可参考: https://blog.csdn.net/llx1990rl/article/details/44001921 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam) 前言 (标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了. SGD…
【零基础】神经网络优化之Adam
一.序言 Adam是神经网络优化的另一种方法,有点类似上一篇中的“动量梯度下降”,实际上是先提出了RMSprop(类似动量梯度下降的优化算法),而后结合RMSprop和动量梯度下降整出了Adam,所以这里我们先由动量梯度下降引申出RMSprop,最后再介绍Adam.不过,由于RMSprop.Adam什么的,真的太难理解了,我就只说实现不说原理了. 二.RMSprop 先回顾一下动量梯度下降中的“指数加权平均”公式: vDW1 = beta*vDW0 + (1-beta)*dw1 vDb1 = b…
Tensorflow学习:(三)神经网络优化
一.完善常用概念和细节 1.神经元模型: 之前的神经元结构都采用线上的权重w直接乘以输入数据x,用数学表达式即,但这样的结构不够完善. 完善的结构需要加上偏置,并加上激励函数.用数学公式表示为:.其中f为激励函数. 神经网络就是由以这样的神经元为基本单位构成的. 2.激活函数 引入非线性激活因素,提高模型的表达力. 常用的激活函数有: (1)relu函数,用 tf.nn.relu()表示 (2)sigmoid函数,用 tf.nn.sigmoid()表示 (3)tanh函数,用 tf.nn.tan…
zz图像、神经网络优化利器:了解Halide
动图示例实在太好 图像.神经网络优化利器:了解Halide Oldpan 2019年4月17日 0条评论 1,327次阅读 3人点赞 前言 Halide是用C++作为宿主语言的一个图像处理相关的DSL(Domain Specified Language)语言,全称领域专用语言.主要的作用为在软硬层面上(与算法本身的设计无关)实现对算法的底层加速,我们有必要对其有一定的了解.因为不论是传统的图像处理方法亦或是深度学习应用都使用到了halide的思想. 其中,在OpenCV(传统图像处理库…
Halide视觉神经网络优化
Halide视觉神经网络优化 概述 Halide是用C++作为宿主语言的一个图像处理相关的DSL(Domain Specified Language)语言,全称领域专用语言.主要的作用为在软硬层面上(与算法本身的设计无关)实现对算法的底层加速,有必要对其有一定的了解.因为不论是传统的图像处理方法亦或是深度学习应用都使用到了halide的思想. 其中,在OpenCV(传统图像处理库)中部分算法使用了Halide后端,而TVM(神经网络编译器)也是用了Halide的思想去优化神经网络算子. Hali…
移动端IM开发者必读(二):史上最全移动弱网络优化方法总结
1.前言 本文接上篇<移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”>,关于移动网络的主要特性,在上篇中已进行过详细地阐述,本文将针对上篇中提到的特性,结合我们的实践经验,总结了四个方法来追求极致的“爽快”:快链路.轻往复.强监控.多异步,从理论讲到实践.从技术讲到产品,理论联系实际,举一反三,希望给您带来启发. 如果您还未阅读完上篇<移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”>,建议您先行读完后再续本文. 本篇的目的,就是希望以通俗易懂…
吴恩达深度学习笔记(五) —— 优化算法:Mini-Batch GD、Momentum、RMSprop、Adam、学习率衰减
主要内容: 一.Mini-Batch Gradient descent 二.Momentum 四.RMSprop 五.Adam 六.优化算法性能比较 七.学习率衰减 一.Mini-Batch Gradient descent 1.一般地,有三种梯度下降算法: 1)(Batch )Gradient Descent,即我们平常所用的.它在每次求梯度的时候用上所有数据集,此种方式适合用在数据集规模不大的情况下. X = data_input Y = labels parameters = initia…
[DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准的梯度下降算法. 基本思想:计算梯度的指数加权平均数并利用该梯度更新你的权重 假设图中是你的成本函数,你需要优化你的成本函数函数形象如图所示.其中红点所示就是你的最低点.使用常规的梯度下降方法会有摆动这种波动减缓了你训练模型的速度,不利于使用较大的学习率,如果学习率使用过大则可能会偏离函数的范围.为…
各种优化方法总结比较(sgd/momentum/Nesterov/adagrad/adadelta)
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小. 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stochastic gradient descent,即随机梯度下降.是梯度下降的batch版本. 对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本.我们每次更新都利用一个batch的数据,而非整个训练集.即: xt+1=xt+Δxt Δxt=−ηgt −ηgt −ηΔf(xt−1+ρx…
各种优化方法总结比較(sgd/momentum/Nesterov/adagrad/adadelta)
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们须要找到一组參数x.使得f(x)的值最小. 本文下面内容如果读者已经了解机器学习基本知识,和梯度下降的原理. SGD SGD指stochastic gradient descent,即随机梯度下降.是梯度下降的batch版本号. 对于训练数据集,我们首先将其分成n个batch,每一个batch包括m个样本.我们每次更新都利用一个batch的数据.而非整个训练集. 即: xt+1=xt+Δxt Δxt=−ηgt 当中.η为学习率,gt为x在…
优化深度神经网络(二)优化算法 SGD Momentum RMSprop Adam
Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch gradient descent SGD VS BGD VS MBGD 3. 指数加权平均(Exponentially weighted averages) 这种滑动平均算法称为指数加权平均(exponentially weighted average)其一般形式为: 值决定了指数加权平均的天数,近似表示为:…
机器学习优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
SGD: 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了.现在的SGD一般都指mini-batch gradient descent. SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: 其中,是学习率,是梯度. SGD完全依赖于当前ba…
深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等
机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣,同时利用损失函数来提升算法模型. 这个提升的过程就叫做优化(Optimizer) 下面这个内容主要就是介绍可以用来优化损失函数的常用方法 常用的优化方法(Optimizer): 1.SGD&BGD&Mini-BGD: SGD(stochastic gradient descent):随机梯度下…
[深度学习] 最全优化方法总结比较--SGD,Adagrad,Adadelta,Adam,Adamax,Nadam
SGD 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了.现在的SGD一般都指mini-batch gradient descent. SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: gt=∇θt−1f(θt−1) Δθt=−η∗gt…
深度学习优化算法Momentum RMSprop Adam
一.Momentum 1. 计算dw.db. 2. 定义v_db.v_dw \[ v_{dw}=\beta v_{dw}+(1-\beta)dw \] \[ v_{db}=\beta v_{db}+(1-\beta)db \] 3. 更新dw.db \[ dw=w-\alpha v_{dw} \] \[ db=b-\alpha v_{db} \] 二.RMSprop 1. 计算dw.db. 2. 定义s_db.s_dw (这里的平方是元素级的) \[ s_{dw}=\beta s_{dw}+(1…
优化算法:AdaGrad | RMSProp | AdaDelta | Adam
0 - 引入 简单的梯度下降等优化算法存在一个问题:目标函数自变量的每一个元素在相同时间步都使用同一个学习率来迭代,如果存在如下图的情况(不同自变量的梯度值有较大差别时候),存在如下问题: 选择较小的学习率会使得梯度较大的自变量迭代过慢 选择较大的学习率会使得梯度较小的自变量迭代发散 因此,自然而然想到,要解决这一问题,不同自变量应该根据梯度的不同有不同的学习率.本篇介绍的几种优化算法都是基于这个思想的. 1 - AdaGrad算法 使用一个小批量随机梯度$g_t$按元素平方的累加变量$s_t$…
神经网络优化算法:Dropout、梯度消失/爆炸、Adam优化算法,一篇就够了!
1. 训练误差和泛化误差 机器学习模型在训练数据集和测试数据集上的表现.如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不⼀定更准确.这是为什么呢? 因为存在着训练误差和泛化误差: 训练误差:模型在训练数据集上表现出的误差. 泛化误差:模型在任意⼀个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似. 训练误差的期望小于或等于泛化误差.也就是说,⼀般情况下,由训练数据集学到的模型参数会使模型在训练数据集上的表现优于或等于在测…
梯度下降做做优化(batch gd、sgd、adagrad )
首先说明公式的写法 上标代表了一个样本,下标代表了一个维度: 然后梯度的维度是和定义域的维度是一样的大小: 1.batch gradient descent: 假设样本个数是m个,目标函数就是J(theta),因为theta 参数的维度是和 单个样本 x(i) 的维度是一致的,theta的维度j thetaj是如何更新的呢?? 说明下 这个公式对于 xj(i) 需要说明,这个代表了样本i的第j个维度:这个是怎么算出来的,要考虑 htheta 2.SGD 可以看到 theta的一个维度j的…
tensorflow(3):神经网络优化(ema,regularization)
1.指数滑动平均 (ema) 描述滑动平均: with tf.control_dependencies([train_step,ema_op]) 将计算滑动平均与 训练过程绑在一起运行 train_op=tf.no_op(name='train') 使它们合成一个训练节点 #定义变量一级滑动平均类 #定义一个32位浮点变量,初始值为0.0, 这个代码就是在不断更新w1参数,优化 w1,滑动平均做了一个w1的影子 w1=tf.Variable(0,dtype=tf.float32) #定义num…