C 语言实例 - 求两数最小公倍数 用户输入两个数,其这两个数的最小公倍数. 实例 - 使用 while 和 if #include <stdio.h> int main() { int n1, n2, minMultiple; printf("输入两个正整数: "); scanf("%d %d", &n1, &n2); // 判断两数较大的值,并赋值给 minMultiple minMultiple = (n1>n2) ? n1…
辗转相除法,一种求最大公约数的算法 已知:A / B = C ······ R  (A.B.C.R皆是整数) 假设:D是A的余数,D也是B的余数,那么D就是A和B的公约数 D是A和B的约数,则A和B是D的倍数,B * C也是D的倍数 既然A与B*C都是D的倍数,那么A与B*C的差也是D的倍数 A - B*C = R 所以R也是D的倍数 如果D是A或B的公约数,那么D也是B和R的公约数 故:(A,B)= (B,R) 由以上证明则可以求出最大的公约数 例如:求72和28的最大公约数 72 / 28…
#include<iostream> using namespace std; //不推荐用goto,当然用它更快 //辗转相除法求两数的最大公约数 int gcd(long int a,long int b){ int x=a<b?a:b; //获得较小者,用来做循环的约束值 ;i<x;x++){ //循环 if(a>b){ int r=a%b;//取余数 ){//能否整除判断 return b;//可以便输出 }else{//否则进行下一轮的算法 a=b,b=r; } }…
int gcd(int a, int b)//求最大公约数,a为分子,b为分母 { ) return a; return gcd(b,a%b); }…
辗转相除法,又称欧几里得算法.两个正整数a和b(a>b),它们的最大公约数等于余数c和较小的数b之间的最大公约数.最小公倍数=两数之积/最大公约数 #include <stdio.h> int get1(int a, int b) { if (a < b) { int c = a; a = b; b = c; } while (a%b != 0) { b = a%b; a = b; } return b; } int get2(int a,int b) { return a*b /…
前言 这个求解方式多样化,灵活变动,但是,网上没有很好的资源和很全的代码,特此练习,敲打后,总结成本片文章. 单一求解 一.最大公约数 1.穷举法(最简单求解方式) 利用除法方式用当前的数字不断去除以比较小的那个数的范围,最后得到两个数都可以整除的那个数.(这种方法也是最容易想到的) 核心代码 //…
辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例:求 15750 与27216的最大公约数. 解: ∵27216=15750×1+11466 ∴(15750,27216)=(15750,11466) ∵15750=11466×1+4284 ∴(15750,11466)=(11466,4284) ∵11466=4284×2+2898 ∴(11466…
要求最小公倍数可先求出最大公约数 设要求两个数a,b的最大公约数 伪代码: int yushu,a,b: while(b不等于0) { yushu=a对b求余 b的值赋给a yushu的值赋给b } 代码: int gongyue() { int yushu,a,b; while(b) { yushu=a%b; a=b; b=yushu; } return b; } 此子函数可以求出两个数的最大公约数n    最小公倍数为a*b/n:…
最大公约数(Greatest Common Divisor(GCD)) 基本概念 最大公因数,也称最大公约数.最大公因子,指两个或多个整数共有约数中最大的一个.a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号.求最大公约数有多种方法,常见的有质因数分解法.短除法.辗转相除法.更相减损法.与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]. 算法 辗转相除法 辗转相除法:辗转相除法是求两个自然数的最大公约数的…