k近邻法是一种基本分类与回归方法.本章只讨论k近邻分类,回归方法将在随后专题中进行. 它可以进行多类分类,分类时根据在样本集合中其k个最近邻点的类别,通过多数表决等方式进行预测,因此不具有显式的学习过程.其本质是利用训练数据集对特征向量空间进行划分,并作为其分类的模型.k值选择.距离度量以及分类决策规则是其三个基本要素. 一.模型: 特征空间中,对每个训练点,距离该点比其他点更近的所有点组成一个区域(单元),每个训练点拥有一个区域(单元),所有训练点的区域(单元)构成对特征空间的一个划分.最近邻…