「FFT」题单(upd 2019.4.28)】的更多相关文章

持续更新(last upd 2019.4.28) ZJOI2014 力 [题目链接] 解法 对原式进行转换,然后卷积FFT套上去求解就可以了. 推导过程简洁版: \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\] \[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\] \[E_i=\sum^{…
考试考到自闭,每天被吊打. 还有几天可能就要AFO了呢... Luogu3602:Koishi Loves Segments 从左向右,每次删除右端点最大的即可. [HEOI2014]南园满地堆轻絮 答案一定是 \(\lceil \frac{max_{1\le i < j \le n}(a_i-a_j)}{2} \rceil\). 可以考虑一个二分答案 \(mid\),那么每个数 \(x\) 都是一个 \([x-mid,x+mid]\) 的范围. 当前面有一个 \(y\) 使得 \(y-mid>…
题目链接:Vjudge 传送门 相当于把nnn个点分隔为若干块,求所有方案中大小为kkk的块数量 我们把大小为kkk的块,即使在同一种分隔方案中的块 单独考虑,它可能出现的位置是在nnn个点的首.尾.中 出现在首尾时,有222种情况,此时剩下的点有(n−k−1)(n-k-1)(n−k−1)个间隔,每个间隔可分可不分,所以方案数为2⋅2(n−k−1)2\cdot 2^{(n-k-1)}2⋅2(n−k−1) 出现在中间时,有(n−k−1)(n-k-1)(n−k−1)种情况,此时剩下的点有(n−k−2…
(我把原来写的东西全部删掉了) AFO. 我退役了,\(\mbox{yyb}\)退役了. 至少,在接下来的日子里,我得投身到文化课,度过快乐的高三生活了. 这两年的\(OI\)生涯给了我很多,让我学会了很多.与此同时,我也放弃了很多,失去了很多.是时候离开了. 谢谢大家这两年来给我的支持,可是我只能说对不起,我辜负了诸位的期望,止步于此. 现在在回头看之前的自己,有如此雄心壮志却只能惨淡离场. 我能留下的,只有博客中的这些东西了,希望多年以后的\(Oier\)能够通过我的博客至少知道曾经有过我这…
LOJ#3051. 「十二省联考 2019」皮配 当时我在考场上觉得这题很不可做... 当然,出了考场后再做,我还是没发现学校和城市是可以分开的,导致我还是不会 事实上,若一个城市投靠了某个阵营,学校可以任意选择派系,但是反过来看,学校选择了派系,也不影响城市投靠什么阵营,而这两者共同固定了一个学校选择的导师,所以对于k = 0的情况 我们设两个dp,\(g[i][j]\)表示考虑了前i个城市,去蓝阵营的人数为j,\(h[i][j]\)表示考虑了前i个城市,去鸭派系的人数为j,最后只需要把合法的…
「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 题目 考场经历+思考(伪正解) 正解 10:50 A.M. T3 树上的数 题目 考场经历+思考 正解 12:00 写了那么多场的模拟赛,这次终于是来真的了- 但是-写这篇博客心情复杂啊- 不说心情了-哎 Day 1 7:30 A.M. 很早就到了,但是到的时候发现其实很多人都到了- 心态感觉良好,…
  进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(IFFT) 迭代实现 例题 「洛谷 P3803」「模板」多项式乘法(FFT) 题意简述 数据规模 快速数论变换(NTT) 原根 实现 NTT 模数 奇怪的模数 - 任意模数 NTT 三模 NTT 拆系数 FFT(MTT) 七次转五次 五次转四次 例题 「洛谷 P4245」「模板」任意模数 NTT 题意简述 数…
关于项目 项目地址 预览地址 记录最近做的一个 demo,前端使用 React,用 React Router 实现前端路由,Koa 2 搭建 API Server, 最后通过 Nginx 做请求转发. 文章列表 第一篇:React + Node 单页应用「一」前端搭建 React + Node 单页应用「二」OAuth 2.0 授权认证 & GitHub 授权实践 这是第二篇,介绍下 OAuth 2.0 授权机制,以及 Github App 授权过程,通过获取授权使用 Github API. O…
原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法,计算出在根柱子上最多能放多少个球. Solution 如果是完全平方数则连有向边,那么一个柱子上的球就相当于图中的一条路径.二分答案,以是否能用不超过条路径覆盖作为条件. Code //「网络流 24 题」魔术球 #include <cstdio> #include <cstring>…
原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio> #include <cstring> inline char gc() { static char now[1<<16],*S,*T; if(S==T) {T=(S=now)+fread(now,1,1<<16,stdin); if(S==T) return EOF;…