一般图最大匹配--带花树 问题 ​ 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. ​ 这个问题的退化版本就是二分图最大匹配. ​ 由于二分图中不存在奇环,偶环对最大匹配并无影响(可以调整).所以增广路算法是可以顺利应用的. ​ 在一般图中,我们还是尝试使用BFS增广路的算法. ​ 然而一般图中还会出现奇环,在寻找增广路的时候,怎么处理奇环上的冲突? ​ 目的就是将奇环不断地缩起来(缩花),使得整个图在使用增广算法的时候不受影响,即不会经过奇环. 花 ​ 一朵花由一个奇…
https://www.lydsy.com/JudgeOnline/problem.php?id=4405 这道题大概就是考场上想不出来,想出来也调不出来的题. 把每个桶拆成三个互相有边的点,每个球向它连接的桶的三个点分别连边. 0球1桶,匹配数为1:1球1桶,匹配数为2:2球一桶,匹配数为2:3球一桶,匹配数为3: 发现每种半桶的情况下匹配数都比该桶中放的球数大1,那么ans=最大匹配数-球数. 带花树找lca的时候,记得是用每个点的总父亲找.带花树的细节真是恶心人. #include<ios…
一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后手没有路可走,由于假设还有路可走,这一条交错路,就是一个增广路,必定有更大的匹配. Game Time Limit: 1 Second      Memory Limit: 32768 KB Fire and Lam are addicted to the game of Go recently.…
问题描述 ​ 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\)为\(G\)的一个匹配,当且仅当\(|S|\)最大时,称\(S\)为\(G\)的最大匹配 ​ 那么要如何求解一个图的最大匹配呢? 特殊图上? ​首先考虑特殊图的最大匹配问题,也就是很经典的二分图最大匹配,这个问题可以用匈牙利算法解决,这里就不再赘述具体的实现等细节问题,我们只回顾一下这个算法的核心思…
看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不大靠谱 比如昨晚找到一篇鄙视带花树的论文,然后介绍了一种O(E)的一般图最大匹配……我以为找到了神论文,然后ACM_DIY众神纷纷表示这个是错的……于是神论文成为了”神论文“…… 又比如围观nocow上带花树标程,一看……这显然是裸的匈牙利算法……货不对板啊 当然……如果二分图的匈牙利算法还不会请先…
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Submission(s): 649    Accepted Submission(s): 202…
<题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样判断该匹配是否在最大匹配中呢?我们可以枚举每一对匹配,然后对其进行取消其匹配关系,对其余的匹配跑一遍最大匹配,如果是原始最大匹配-1,说明这对匹配关系在最大匹配关系中.需要注意的是,删除匹配关系的时候,不经要将该边的匹配关系删除,还需将所有点与这两点之间的匹配关系删除(即相当于删除这两点). #include…
<题目链接> <转载于 >>>  > 题目大意: 给出n个士兵,再给出多组士兵之间两两可以匹配的关系.已知某个士兵最多只能与一个士兵匹配.求最多能够有多少对匹配,并输出这些匹配. 解题分析:本题不一定是二分图,所以求最大匹配不能用匈牙利,因为该一般图可能出现奇环.本题用带花树求解,下面是带花树的模板. #include <iostream> #include <stdio.h> #include <string.h> #incl…
[UOJ#79]一般图最大匹配(带花树) 题面 UOJ 题解 带花树模板题 关于带花树的详细内容 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map> #include<vector>…
题目链接 https://www.luogu.com.cn/problem/P6113 题目大意 给定一个 \(n\) 个点 \(m\) 条边的无向图,求该图的最大匹配. 题目解析 二分图最大匹配,一般用匈牙利算法完成,图中只存在偶环. 而一般图不能分为左右两部,存在奇环,如何处理奇环,是带花树算法的关键. 若将偶环缩为一点,则该图可以简化为只有奇环的无向图. 对于奇环内部,两两匹配后必定多出一个点不能匹配,则将该点与环外部的点相匹配即可. 通过类似匈牙利算法的多次增广,可以找到最大匹配. 点数…
http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利的找增广路操作,每次将一个点作为根(染成白色),然后向下bfs黑白染色,两个白点相邻时将这两个白点缩到割顶成一个点(用并查集维护一下)(匈牙利算法也是只用白点找增广,黑点相当于重复计算了没有意义),然后把奇环里所有黑点视为白点放到队列里bfs. 设置一个pre数组记录返回的路径(因为bfs的方向和匈…
正题 题目链接:https://www.luogu.com.cn/problem/P6113 题目大意 给出一张无向图,求最大匹配. \(1\leq n\leq 10^3,1\leq m\leq 5\times 10^4\) 解题思路 带花树的模板,我也不会讲/kel 所以看下面两篇大佬的博客吧 yyb-带花树算法学习笔记 Bill Yang-带花树学习笔记 时间复杂度好像是\(O(n^3)\)的 code #include<cstdio> #include<cstring> #i…
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于一个小组. 有若干个这样的条件:第 v 个男生和第 u 个男生愿意组成小组. 请问这个班级里最多产生多少个小组? 输入格式 第一行两个正整数,n,m.保证 n≥2. 接下来 m 行,每行两个整数 v,u 表示第 v 个男生和第 u 个男生愿意组成小组.保证 1≤v,u≤n,保证 v≠u,保证同一个条…
http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next(表示匹配),状态s(-1表示这个点没访问过,0表示这个点可以搜另一条相邻的未盖边,1表示这个点不能用于搜另一条相邻的未盖边),pre数组(u原先的匹配是Next[u],增广时u的匹配断掉了,u就与pre[u]进行匹配,即Next[u]=pre[u],Next[pre[u]]=u).从一个点pre和N…
传送门 带花树 不加证明的说一下过程好了:每次从一个未匹配点\(S\)出发bfs,设\(S\)为\(1\)类点,如果当前点\(v\)在本次bfs中未经过,分为以下两种情况 1.\(v\)是未匹配点,那么从\(S\)到\(v\)的路径就是一条增广路,把这条路径增广即可 2.\(v\)是匹配点,那么把\(v\)设为\(2\)类点,并把\(v\)的匹配点扔进bfs的队列里 如果\(v\)已经经过了,且是一个\(1\)类点的话无视,否则如果是一个\(2\)类点,说明找到了一个奇环,把这个奇环缩成一个点(…
http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极大匹配中都必然有si或ti至少一个点被匹配,当在图中去掉si,ti两个点时,匹配数会损失一个或两个. 如果损失两个,就说明在极大匹配中这两个点分别连接不同的边,于是边i是无用的 所以总体思路:一般图匹配求出最大匹配数cnt0,分别试着去掉每条边的端点,再次匹配,匹配数如果小于cnt0-1,则这条边无…
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图. 1.一个二分图中的最大匹配数等于这个图中的最小点覆盖数 König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数.如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选…
1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to scheduled in pairs, so that each pair guards…
1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to scheduled in pairs, so that each pair guards a…
Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total Submission(s): 336    Accepted Submission(s): 116 Problem Description A new season of Touhou M-1 Grand Prix is approaching. Girls in Gensokyo…
题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: 64 MB There is a certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to be…
题目描述 从前一个和谐的班级,所有人都是搞OI的.有 nn 个是男生,有 00 个是女生.男生编号分别为 1,-,n1,-,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于一个小组. 有若干个这样的条件:第 vv 个男生和第 uu 个男生愿意组成小组. 请问这个班级里最多产生多少个小组? 输入格式 第一行两个正整数,n,mn,m.保证 n≥2n≥2. 接下来 mm 行,每行两个整数 v,uv,u 表示第 vv 个男生和第 uu 个男生愿意组成小…
题目描述 给你一个图,求最大匹配. 边的描述方式很特殊,就是一次告诉你\(c_i\)个点:\(d_1,d_2,\ldots,d_{c_i}\),表示这些点两两之间都有连边,也就是说,这是一个团.总共有\(m\)个团. 记\(s=\sum_{i=1}^mc_i\). \(n,m,s\leq 3000\) 题解 直接跑带花树的话时间复杂度是\(O(ns^2\alpha(n))\)的,显然会TLE. 假设每个\(c_i\)都是偶数(如果是奇数就让最后一个点像前面的点连边,然后把这个点去掉). 对于每一…
QAQ现在很不想写题解博客那就来写个算法吧QAQ... 带花树 题目 来看个题... UOJ79. 某机房里有\(n\)个OIer,其中有\(n\)个男生,\(0\)个女生.现在他们要两两配对. 有\(m\)个关系,每个关系是一个无序对\((a_i,b_i)\),表示这两个人之间愿意配对. 求:最多能配成多少对,并找出一组方案. 说人话:一般图最大匹配. 算法 既然是匹配,我们能不能直接模仿匈牙利算法呢?答案是不可以(废话,可以的话还要什么带花树啊). 原因是:我们在二分图中,如果dfs找增广路…
带花树裸题,感觉带花树强强……不会的勿看此文,解释的可能不对,只是给自己看的!!!如题,带花树即为求一般图最大匹配算法(匈牙利与dinic为二分图最大匹配).推荐论文:2015年<浅谈图的匹配算法及其应用>(长郡中学    ——陈胤伯).论文当中有对于带花树算法的详细解析,在这里只想记录一下算法的基本流程: —————————————————————————— \(id\) : 记录一个点为奇点/偶点(0偶1奇). \(fa\) : 并查集记录一个点属于哪一个点为根的花. ——————————…
题目大意 一般图最大匹配. 题解: 求解一般图最大匹配. 直接使用带花树即可. (带花树也是刚学)... 马上写带花树的ppt,会很通俗易懂. (充分证明了本苣智商不够,写不出高深的课件) 如果有想要的依然可以直接私信我 QAQ 带花树模板 #include <cstdio> #include <cstring> #include <algorithm> typedef long long ll; inline void read(int &x){ x=0;ch…
题目链接 Problem Statement As you are probably aware, the Internet protocols specify a canonical byte order convention for data transmitted over the network called network byte order, so that machines with different byte order conventions can communicate…
10566 Bimatching 题意:一个男生必须跟两个女生匹配,求最大匹配 思路:一般的二分图匹配做不了,网络流也不会建图,这题采用的是一般图匹配 首先在原来二分图的基础上,将一个男生拆成两个点 两个点之间有一条边,这样图至少会有n个匹配 如果想要答案加1,只有当这两个点跟两个女生匹配的时候 所以最后的答案是一般图最大匹配减去n 一般图最大匹配用带花树 #pragma GCC optimize(3, "Ofast", "inline") #include<…
[WC2016]挑战NPC(一般图最大匹配) Luogu 题解时间 思路十分有趣. 考虑一个筐只有不多于一个球才有1的贡献代表什么. 很明显等效于有至少两个位置没有被匹配时有1的贡献. 进而可以构造如下模型: 每个筐拆成三个点,三个点之间相互连边. 对于球可以匹配某个筐,将球向筐的三个点都连边. 这样一来,如果有一个筐只有不多于一个点被匹配,那么剩下的两个点可以自己匹配增加答案. 如此最终结果是 $ ans-n $ . 需要用到一般图最大匹配也即带花树. 由于答案要求输出匹配方案,所以要注意先匹…
[BZOJ4405][WC2016]挑战NPC(带花树) 题面 BZOJ 洛谷 Uoj Description 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有n个球,用整数1到n编号.还有m个筐子,用整数1到m编号. 每个筐子最多能装3个球. 每个球只能放进特定的筐子中.具体有e个条件,第i个条件用两个整数vi和ui描述,表示编号为vi的球可以放进编号为ui的筐子中. 每个球都必须放进一个筐子中.如果一个筐子内有不超过1个球,那么我们称这样的筐子为半空的.…