VGGNet由牛津大学的视觉几何组(Visual Geometry Group)提出,是ILSVRC-2014中定位任务第一名和分类任务第二名.本文的主要贡献点就是使用小的卷积核(3x3)来增加网络的深度,并且可以有效提高网络的性能,而且在其他数据集上也有很好的泛化能力. 总结本文,能为网络带来比较好的方法有: 1) 加深网络的深度(网络太深,可能造成过拟合,需要小心): 2) 将较大的卷积核替换为小的卷积核,比如3x3,效果会变好,参数也会降低: 3) 使用1x1卷积,可以为网络增加非线性,某…
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zisserman[§] Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk 用于大规模图像识别的深度卷积网络 Karen Simonyan[‡] &am…
https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformable的卷积如何实现的一步上,在写这篇博客之前,我也查阅了很多其他人的分享或者去github找代码,当然也不敢说完全了解了这种特殊的卷积……仅仅做一点自己的阅读心得与体会吧.这是一篇很有意义的工作,但是和深度学习很多论文一样,在读完之后内心也不免有着种种疑云. Deformable Convoluti…
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加灵活,分析到卷积网络对尺寸并没有要求,固定尺寸的要求完全来源于全连接层部分,因而借助空间金字塔池化的方法来衔接两者,SPPNet在检测领域的重要贡献是避免了R-CNN的变形.重复计算等问题,在效果不衰减的情况下,大幅提高了识别速度.   用于视觉识别的深度卷积网络空间金字塔池化方法 Spatial…
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc…
目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 改进的思路 2.4 进一步创新 2.5 本文贡献 三.PointConv 3.1 2D图像与3D点云的区别 3.2 3D连续卷积 -> 点云卷积 3.2.1 原始PointConv 3.2.2 高效的PointConv 3.2.3 PointDeConv 四.实验 4.1 在ModelNet40上的…
Very Deep Convolutional Networks for Large-Scale Image Recognition 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/39736509 这篇论文是今年9月份的论文[1],比較新,当中的观点感觉对卷积神经网络的參数调整大有指导作用,特总结之.关于卷积神经网络(Convolutional Neural Network, CNN),笔者后会作文阐述之,读者若心急则或可用谷歌百度一…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…
<DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks>研读笔记 论文标题:DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks 来源:ICCV 2017 摘要: 尽管手机中的嵌入式照相机的性能在快速地发展,但是它们所受到的物理限制——较小的感光器件,精简的镜头和缺少特定的硬件——制约着手机的相机拍出与DSLR(单反)同…
2014-VGG-<Very deep convolutional networks for large-scale image recognition>翻译 原文:http://xueshu.baidu.com/s?wd=paperuri%3A%282801f41808e377a1897a3887b6758c59%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.…