1. Machine Learning definition(机器学习定义) Arthur Samuel(1959年)将机器学习非正式定义为:在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域. 创造西洋棋程序,可以和自己对战. Tom Mitchell(1998年)提出一个更为正式关于机器学习的定义 :对于一个计算机程序来说:给它一个任务T和一个性能测量方法P,如果在经验E的影响下,P对T的测量结果得到了改进,那么就说改程序从E中学习. E = the experience o…
主讲人 常象宇 大家好,我是likrain,本来我和网神说的是我可以作为机动,大家不想讲哪里我可以试试,结果大家不想讲第一章.估计都是大神觉得第一章比较简单,所以就由我来吧.我的背景是统计与数学,稍懂些计算机,大家以后有问题可以讨论. 今天我们来讲一下PRML第一章,这一章的内容是基于一些简单的例子对于机器学习中的基本概念给与介绍.这是为后续章节的介绍给一个铺垫.我今天讲的内容包括以下几个部分: 把书上的知识点做了个总结大概.首先我们来看一下,我个人理解的机器学习的定义:机器学习的分类有很多种,…
原文:http://blog.csdn.net/abcjennifer/article/details/7834256 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这种规律来预测当前的情况下该怎么做,这种过程就是一个机器学习的过程. 我们可以发现,这个过程里有规律和当前的情况.规律就是模型,当前情况就是当前的数据,会根据当前的情况会根据不同的规律来得出不同的结论来驱动下一个行为,就是数据驱动的一种决策方式,这和我们编程用的指令驱动方式是完全不同的. 机器学习是根…
除了实现机器学习算法之外,机器学习还包含许多其他内容.生产环境机器学习系统包含大量组件.无需自行构建所有内容,而是应该尽可能重复使用常规机器学习系统组件.通过了解机器学习系统的一些范例及其要求,可以明确实际需要哪些组件. 1- 静态训练与动态训练(Static vs. Dynamic Training) 从广义上讲,训练模型的方式有两种:静态模型 采用离线训练方式:只训练模型一次,然后使用训练后的模型一段时间. 易于构建和测试:使用批量训练和测试,对其进行迭代,直到达到良好效果. 仍然需要对输入…
本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable) 1. 线性回归算法(linear regression) 1.1 预测房屋价格 该问题属于监督学习中的回归问题,让我们来复习一下: 监督学习(Supervised'Learning'):对示例数据给出"正确答案". 回归问题(Regression 'Problem'):根据之前的数据预测出一个准确的输出值 . 1.2 训练集 m=训练样本数量 x's=输入变量/特征量 y'…
一,什么是机器学习 第一个机器学习的定义来自于 Arthur Samuel.他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域.Samuel 的定义可以回溯到 50 年代,他编写了一个西洋棋程序.这程序神奇之处在于,编程者自己并不是个下棋高手.但因为他太菜了,于是就通过编程,让西洋棋程序自己跟自己下了上万盘棋.通过观察哪种布局(棋盘位置)会赢,哪种布局会输,久而久之,这西洋棋程序明白了什么是好的布局,什么样是坏的布局.程序通过学习后,玩西洋棋的水平超过了 Samuel.这绝对是令…
Machine Learning == Looking for a Function AI过程的解释:用户输入信息,计算机经过处理,输出反馈信息(输入输出信息的形式可以是文字.语音.图像等). 因为从输入到输出的处理不是简单的数学运算,甚至很多时候科学家并不知道如何来实现这个过程. 所以最初的时候科学家写了很多的规则. 但是这种方法,有很多的问题: 一是hand-crafted rule无法包括所有可能情况, 二是它永远不会超过它的创造者的水平, 三是投入的人力过多. 所以后来采用的方法是让计算…
Introduction What is Machine Learning? Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal…
转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更聪明,更人性化的技术,机器学习. – 埃里克 施密特(谷歌首席执行官) 当计算从大型计算机转移至个人电脑再转移到云的今天,我们可能正处于人类历史上最关键的时期.之所以关键,并不是因为已经取得的成就,而是未来几年里我们即将要获得的进步和成就. 对我来说,如今最令我激动的就是计算技术和工具的普及,从而带…