tensorflow 训练之tensorboard使用】的更多相关文章

1.add saclar and histogram tf.summary.scalar('mean', mean) tf.summary.histogram('histogram', var) 2. sess-op merged = tf.summary.merge_all() 3.writer init train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph) 4.sess run & w…
这次来训练一个基于CNN的语音识别模型.训练完成后,我们将尝试将此模型用于Hotword detection. 人类是怎样听懂一句话的呢?以汉语为例,当听到"wo shi"的录音时,我们会想,有哪两个字是读作"wo shi"的,有人想到的是"我是",也有人觉得是"我市".我们可以通过"wo shi"的频率的特征,匹配到一些结果,我们这次要训练的模型,也是基于频率特征的CNN模型.单纯的基于频率特征的识别有很…
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as np import os import tensorflow as tf from PIL import Image classes = ["aeroplane", "bicycle", "bird", "boat", &quo…
自己搞了20万张图片100个分类,tensorflow训练23万次后...... 我自己把训练用的一张图片,弄乱之后做了一个预测 100个汉字,20多万张图片,tensorflow CNN训练23万次它自己停止训练了.预测的时候类似这样   我故意搞的缺边缺角的都能正常识别 预测结果类别是70,恰恰就是我其中一个训练集中的汉字 "亚" 准确率看样子还是不错的,就是不知道能有什么具体的应用了…
tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 + python3.6 + win10 + i7 + 12G内存  数据样本大小95.3MB,训练时间大约20分钟 结果如下:…
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门…
tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: utf-8 -*- from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random import cv2 import os # 验…
title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning tags: MNIST TensorFlow 在最后测试的一步报错: ResourceExhaustedError (see above for traceback): OOM when allocating tensor 搜索了一下才知道是GPU显存不足(emmmm....)造成的,可以把最后测…
ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow 自己训练") 1.完整实现利用tensorflow训练自己的图片数据集 - 故沉的博客 - CSDN博客.html(https://blog.csdn.net/jesmine_gu/article/details/81155787) ZC:该作者 提供了 自己的代码(github) 2.猫狗 用自己…
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢复.下面是 TensorFlow-Examples 项目中提供的保存和恢复代码. ''' Save and Restore a model using TensorFlow. This example is using the MNIST database of handwritten digits…
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #训练过程中的数据储存在E:\\MNIST_data\\目录中,通过这个路径指定--log_dir data…
TensorBoard TensorFlow自带的可视化工具,能够以直观的流程图的方式,清楚展示出整个神经网络的结构和框架,便于理解模型和发现问题. 可视化学习:https://www.tensorflow.org/guide/summaries_and_tensorboard 图的直观展示:https://www.tensorflow.org/guide/graph_viz 直方图信息中心:https://www.tensorflow.org/guide/tensorboard_histogr…
最近写的一些程序以及做的一个关于轴承故障诊断的程序 最近学习进度有些慢 而且马上假期 要去补习班 去赚下学期生活费 额.... 抓紧时间再多学习点 1.RNN递归神经网络Tensorflow实现程序 import os os.environ[' import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MN…
训练自己的数据集(以bottle为例):   1.准备数据 文件夹结构: models ├── images ├── annotations │ ├── xmls │ └── trainval.txt └── bottle ├── train_logs 训练文件夹 └── val_logs 日志文件夹 1).下载官方预训练模型: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/det…
tensorflow安装 tensorflow安装过程不是很顺利,在这里记录一下 环境:Ubuntu 安装 sudo pip install tensorflow 如果出现错误 Could not findany downloads that satisfy the requirement tensorflow 执行 sudo pip install --upgrade pip sudo pip install tensorflow 如果出现错误 Cannot uninstall 'six'.I…
TensorBoard简介 TensorBoard是TensorFlow自带的一个强大的可视化工具,也是一个Web应用程序套件.TensorBoard目前支持7种可视化,Scalars,Images,Audio,Graphs,Distributions,Histograms和Embeddings.其中可视化的主要功能如下. (1)Scalars:展示训练过程中的准确率.损失值.权重/偏置的变化情况. (2)Images:展示训练过程中记录的图像. (3)Audio:展示训练过程中记录的音频. (…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector #载入数据集 mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) #运行次数 max_steps = 1001 #图片数量 ima…
tensorboard可以将训练过程中的一些参数可视化,比如我们最关注的loss值和accuracy值,简单来说就是把这些值的变化记录在日志里,然后将日志里的这些数据可视化. 首先运行训练代码 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data&quo…
参考链接https://github.com/tensorflow/models/blob/master/object_detection/g3doc/running_pets.md 先参考https://github.com/tensorflow/models/blob/master/object_detection/g3doc/installation.md安装好环境 以下默认都在models目录下操作 mkdir petstrain 注意PYTHONPATH库路径的设置 # From te…
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能是要看源代码才能理解某个方法的含义,所以今天我们就介绍一下 TensorFlow,这个由谷歌爸爸出品的深度学习框架,文档比较全-以后的我们也都使用这个框架- 0x00 概要 TensorFlow是谷歌爸爸出的一个开源机器学习框架,目前已被广泛应用,谷歌爸爸出品即使性能不是最强的(其实性能也不错),但…
神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先需要选取一小部分训练数据,这一小部分数据叫做一个batch.然后这一个batch会通过前向传播算法得到神经网络的预测结果.计算出当前神经网络的预测答案与正确答案之间的差距(有监督学习,在训练时有一个标注好的数据集),最后根据预测值和真实值之间的差距,反向传播算法会相应的更新神经网络参数的取值,使在这…
包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # 加载数据 mnist = input_data.read_data_sets('/home/workspace/python/tf/data/mnist', one_hot=…
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
Keras是什么,以及相关的基础知识,这里就不做详细介绍,请参考Keras学习站点http://keras-cn.readthedocs.io/en/latest/ Tensorflow作为backend时的训练逻辑梳理,主要是结合项目,研究了下源代码! 我们的项目是智能问答机器人,基于双向RNN(准确的说是GRU)网络,这里网络结构,就不做介绍,只研究其中的训练逻辑,我们的训练是基于fit_generator,即基于生成器模型,节省内存,有助效率提升. 什么是生成器以及生成器的工作原理,这里不…
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层).其中卷积层和池化层各有两层. 在整个模型中,输入层负责数据输入:卷积层负责提取图片的特征:池化层采用最大池化的方式,突出主要特征,并减少参数维度:全连接层再将个特征组合起来:dropout层可以减少每次训练的计算量,并可以一定程度上避免过…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True) MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签:共有10000(mnist.t…
问题描述 这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是: 定义神经网络的layers(层)以及初始化每一层的参数 然后迭代: 前向传播(Forward propagation) 计算cost(Compute cost) 反向传播(Backward propagation) 更新参数(Update parameters) 使用训练好的参数去做预测 在训练的时候发现了一个很奇怪的现象:每一次迭代所有的cost都为0.一开…
利用卷积神经网络训练图像数据分为以下几个步骤 读取图片文件 产生用于训练的批次 定义训练的模型(包括初始化参数,卷积.池化层等参数.网络) 训练 1 读取图片文件 def get_files(filename): class_train = [] label_train = [] for train_class in os.listdir(filename): for pic in os.listdir(filename+train_class): class_train.append(file…
python3,所需模块请自行补齐 # coding=utf8 import pygame import random from pygame.locals import * import numpy as np from collections import deque import tensorflow as tf # http://blog.topspeedsnail.com/archives/10116 import cv2 # http://blog.topspeedsnail.com…