Spark调优秘诀】的更多相关文章

版权声明:本文为博主原创文章,转载请注明出处. Spark调优秘诀 1.诊断内存的消耗 在Spark应用程序中,内存都消耗在哪了? 1.每个Java对象都有一个包含该对象元数据的对象头,其大小是16个Byte.由于在写代码时候,可能会出现这种情况:对象头比对象本身占有的字节数更多,比如对象只有一个int的域.一般这样设计是不合理的,造成对象的“浪费”,在实际开发中应避免这种情况. 2.Java的String对象,会比它内部的原始数据要多出40个字节.因为它内部使用char数组来保存内部的字符序列…
1.诊断内存的消耗 在Spark应用程序中,内存都消耗在哪了? 1.每个Java对象都有一个包含该对象元数据的对象头,其大小是16个Byte.由于在写代码时候,可能会出现这种情况:对象头比对象本身占有的字节数更多,比如对象只有一个int的域.一般这样设计是不合理的,造成对象的“浪费”,在实际开发中应避免这种情况. 2.Java的String对象,会比它内部的原始数据要多出40个字节.因为它内部使用char数组来保存内部的字符序列的,并且还得保存诸如数组长度之类的信息.而且String使用的是UT…
Spark版本:1.1.0 本文系以开源中国社区的译文为基础,结合官方文档翻译修订而来,转载请注明以下链接: http://www.cnblogs.com/zhangningbo/p/4117981.html http://www.oschina.net/translate/spark-tuning 目录 数据序列化 内存优化 确定内存消耗 优化数据结构 序列化RDD存储 优化内存回收 其他考虑因素 并行度 Reduce任务的内存用量 广播”大变量“ 总结 因为大多数Spark程序都具有“内存计…
[场景] Spark提交作业job的时候要指定该job可以使用的CPU.内存等资源参数,生产环境中,任务资源分配不足会导致该job执行中断.失败等问题,所以对Spark的job资源参数分配调优非常重要. spark提交作业,yarn-cluster模式示例: ./bin/spark-submit\ --class com.ww.rdd.wordcount \ --master yarn \ --deploy-mode cluster \  --executor-memory 4G \ --num…
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案. [解决方案] 对有数据倾斜那个RDD,使用sample算子采样出一份样本,统计下每个key的数量,看看导致数据倾斜数据量最大的是哪几个key. 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个ke…
[使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] 小表join大表转为小表broadcast+map大表实现.具体为: 普通的join是会shuffle的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join,此时如果发生数据倾斜,影响处理性能,而此时恰好一…
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.比如大部分key对应10条数据,但是个别key却对应了百万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了:但是个别task可能分配到了百万数据,要运行一两个小时.木桶原理,整个作业的运行进度是由运行…
[业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广播(Broadcast)功能来提升性能. [原理说明] 在算子函数中使用到外部变量或两表join时,默认情况下,Spark会将该变量或小维表复制多个副本,通过网络传输到task中,此时每个task都有一个变量副本.如果变量本身比较大的话(比如100M,甚至1G),那么大量的变量副本在网络中传输的性能…
[Java序列化与反序列化] Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程.序列化使用场景:1.数据的持久化,通过序列化可以把数据永久地保存到硬盘上(通常存放在文件里).2.远程通信,即在网络上传送对象的字节序列. 这篇文章写的不错https://blog.csdn.net/wangloveall/article/details/7992448 [Spark序列化与反序列化场景] 在Spark中,主要有三个地方涉及序列化与反序列化…
由于Spark自己的调优guidance已经覆盖了很多很有价值的点,因此这里直接翻译一份过来.也作为一个积累. Spark 调优 (Tuning Spark) 由于大多数Spark计算任务是在内存中运行计算,任何集群中的资源限制都可能成为Spark程序的瓶颈,比如:CPU.网络.带宽.内存.通常情况下,如果内存能容纳所处理数据,主要的瓶颈则仅是网络带宽.但有些时候您也需要做一些调优,比如利用RDD序列化存储来降低内存消耗.本手册将会涵盖以下两个大点:数据序列化(对优化网络传输和降低内存开销有显著…