斐波那契数列 1. 斐波拉契数列简介 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美…
在这些时候,我可以附和着笑,项目经理是决不责备的.而且项目经理见了孔乙己,也每每这样问他,引人发笑.孔乙己自己知道不能和他们谈天,便只好向新人说话.有一回对我说道,“你学过数据结构吗?”我略略点一点头.他说,“学过数据结构,……我便考你一考.斐波那契数列用Python怎样写的?”我想,讨饭一样的人,也配考我么?便回过脸去,不再理会.孔乙己等了许久,很恳切的说道,“不能写罢?……我教给你,记着!这些字应该记着.将来做项目经理的时候,写账要用.”我暗想我和项目经理的等级还很远呢,而且我们项目里也用不…
1.用JavaScript 判断斐波拉契数列第n个数是多少 //需求:封装一个函数,求斐波那契数列的第n项 //斐波拉契数列 var n=parseInt(prompt("输入你想知道的斐波那契数列的第几位数")); document.write(f(n)); function f(n){ if (n>=3) { var a=1; var b=1; for(var i=3;i<=n;i++){ var temp=b; b=a+b ; a=temp; } return b;…
下面是五种实现斐波那契数列的方法 循环   function fibonacci(n){ var res1 = 1; var res2 = 1; var sum = res2; for(var i = 1;i < n;i ++){ sum = res1 + res2; res1 = res2; res2 = sum; } return sum; } 普通递归 function fibonacci (n) { if ( n <= 1 ) {return 1}; return fibonacci(…
正常简单题:通过仔细观察推断即可看出这是一个斐波拉契数列的题目. HDOJ2041_超级楼梯 在做这题的时候我误入了思维盲区,只想着什么方法可以解决,没有看出是斐波拉契数列.因此第一次用组合数方法打了一次但是WA了,过程中我发现了WA的真正细节(整形数超过范围)还算是有所收获的. 组合数求和解 (WA:因为会炸范围导致M稍微大一些答案就错了) #include<stdio.h> #include<stdlib.h> #include<math.h> #include&l…
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思想. 这个是常见的一种数学算法,其实它就是递归的本质.我们要求的是所有数的乘积,那么我们就先求出两个数的乘积,然后再根据这两个数的乘积去求第三个数的乘积,这样每一次我们实际上都是进行的两个数的相乘,也就是我们把一个很多个数的相乘转换为了两个数的相乘. 2.通过上面的例子可以发现,递归就是将大型复杂问…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n) { int preNum = 1; int prePreNum = 0; int result = 0; if(n ==0){ return 0; } if(n == 1){ return 1; } for(int i = 2; i <= n; i ++){ result = preNum +…
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) .显然这是一个线性递推数列. 通项公式:   ,又称为"比内公式",是用无理数表示有理数的一个范例. 斐波拉契数列也可…
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调用的层级太多,就会超出栈容量. 循环:通过设置计算的初始值及终止条件,在一个范围内重复运算. 斐波拉契数列 题目一:写一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项,定义如下: 第一种解法:用递归的算法: long long Fabonacci(unsigned int n) { i…