poj1673 EXOCENTER OF A TRIANGLE】的更多相关文章

地址:http://poj.org/problem?id=1673 题目: EXOCENTER OF A TRIANGLE Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3637   Accepted: 1467 Description Given a triangle ABC, the Extriangles of ABC are constructed as follows: On each side of ABC,…
题目链接 折腾了半天,没想出怎么证明,以前初中老师教过,不知道怎么办,就量量...受不了,怒抄模版1Y... #include <cstdio> #include <iostream> using namespace std; #define eps 1e-8 struct point { double x,y; }; struct line { point a,b; }; point intersection(line u,line v) { point ret = u.a; d…
题目链接:http://poj.org/problem?id=1673 AC代码: #include<cstdio> #include<cmath> #include<algorithm> #include<iostream> #include<cstring> using namespace std; typedef long long ll; ; const double pi = acos(-1.0); int sgn(double x)…
转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板很重要,模板必须高度可靠.3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面大部分是模板.如果代码一片混乱,那么会严重影响做题正确率.4.注意精度控制.5.能用整数的地方尽量用整数,要想到扩大数据的方法(扩大一倍,或扩大sqrt2).因为整数不用考虑浮点误差,而且运算比浮点快. 一.点…
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面大部分是模板.如果代码一片混乱,那么会严重影响做题正确率. 4.注意精度控制. 5.能用整数的地方尽量用整数,要想到扩大数据的方法(扩大一倍,或扩大sqrt2).因为整数不用考虑浮点误差,而且运算比浮点快. 一.点,线,面,形基本关系,点积叉积的理解 POJ 2318 TOYS(推荐) http:/…
-----------------------------最优化问题------------------------------------- ----------------------常规动态规划  SOJ1162 I-Keyboard  SOJ1685 Chopsticks SOJ1679 Gangsters SOJ2096 Maximum Submatrix  SOJ2111 littleken bg SOJ2142 Cow Exhibition  SOJ2505 The County…
Description Given a triangle ABC, the Extriangles of ABC are constructed as follows: On each side of ABC, construct a square (ABDE, BCHJ and ACFG in the figure below). Connect adjacent square corners to form the three Extriangles (AGD, BEJ and CFH in…
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [], [,4], [6,,7], [4,,8,3] ] The minimum path sum from top to bottom is 11 (i.e.,…
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3,3,1]. Note:Could you optimize your algorithm to use only O(k) extra space? 杨辉三角想必大家并不陌生,应该最早出现在初高中的数学中,其实就是二项式系数的一种写法. 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1…
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 杨辉三角是二项式系数的一种写法,如果熟悉杨辉三角的五个性质,那么很好生成,可参见我的上一篇博文: http://www.cnblogs.com/grandyang/p/4031536.html 具体生…