Machine Learning 第一二周】的更多相关文章

# ML week 1 2 一.关于machine learning的名词 学习 从无数数据提供的E:experience中找到一个函数使得得到T:task后能够得到P:prediction 监督学习 experience中的数据都是有t和p的,计算机通过t和p得到函数 1.分类 p是明确的类 如:书有小说,教科书,故事书 2.回归 p是线性的,如:书的价格 非监督学习 experience中的数据只有t没有p,计算机仅通过t得到可以分成不同类的p函数 1.聚类 将产生的结果分成不同的集合,每个…
In Week 6, you will be learning about systematically improving your learning algorithm. The videos for this week will teach you how to tell when a learning algorithm is doing poorly, and describe the 'best practices' for how to 'debug' your learning…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕了Cousera上Machine Learning的最后一周课程.这周介绍了machine learning的一个应用:photo OCR(optimal character recognition,光学字符识别),以下将笔记整理在以下. Photo OCR Problem Description and Pipeline 最后几小节介绍机器学习的一个应用--photo O…
博客已经迁移到Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕了Andrew Ng在Cousera上的Machine Learning的第十周课程,这周主要介绍的是大规模机器学习.现将笔记整理在以下. Gradient Descent with Large Datasets Learning With Large Datasets 在前面介绍bias-variance的时候.我们曾提到一个比較各种算法孰优孰劣的实验,结论是"it's…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向…
The Neural Network is one of the most powerful learning algorithms (when a linear classifier doesn't work, this is what I usually turn to), and this week's videos explain the 'backprogagation' algorithm for training these models. In this week's progr…
1.Gaussian Kernel function sim = gaussianKernel(x1, x2, sigma) %RBFKERNEL returns a radial basis function kernel between x1 and x2 % sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2 % and returns the value in sim % Ensure that…
1.linearRegCostFunction: function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lamb…