MapReduce-TextInputFormat 切片机制】的更多相关文章

1.FileInputFormat切片机制 切片机制 比如一个文件夹下有5个小文件,切片时会切5个片,而不是一个片 案例分析 2.FileInputFormat切片大小的参数配置 源码中计算切片大小的公式 切片大小设置 获取切片大小API 3. CombineTextInputFormat切片机制 框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其…
MapReduce 框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,如果有大量小文件,就会产生大量的 MapTask,处理小文件效率非常低. CombineTextInputFormat:用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个 MapTask 处理. CombineTextInputFormat 切片机制过程包括:虚拟存储过程和切片过程二部分 假设 setMaxInputSplitSize 值为 4M,有如下四…
MapReduce 默认使用 TextInputFormat 进行切片,其机制如下 (1)简单地按照文件的内容长度进行切片 (2)切片大小,默认等于Block大小,可单独设置 (3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片 例如: (1)输入数据有两个文件: filel.txt 320M file2.txt 10M (2)经过 FilelnputFormat(TextInputFormat为其实现类)的切片机制运算后,形成的切片信息如下: filel.txt.splitl--0~1…
一. MapTask并行度决定机制 maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度 那么,mapTask并行实例是否越多越好呢?其并行度又是如何决定呢? 1.1 mapTask并行度的决定机制 一个job的map阶段并行度由客户端在提交job时决定 而客户端对map阶段并行度的规划的基本逻辑为: 将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理 (3)注意:b…
MapReduce中作业调度机制主要有3种: 1.先入先出FIFO      Hadoop 中默认的调度器,它先按照作业的优先级高低,再按照到达时间的先后选择被执行的作业. 2.公平调度器(相当于时间片轮转调度)      为任务分配资源的方法,其目的是随着时间的推移,让提交的作业获取等量的集群共享资源,让用户公平地共享集群.具体做法是:当集群上只有一个任务在运行时,它将使用整个集群,当有其他作业提交时,系统会将TaskTracker节点空间的时间片分配给这些新的作业,并保证每个任务都得到大概等…
这一讲我们主要剖析MapReduce的原理机制和流程. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发布云计算实战性资料,欢迎大家加入! 关于MapReduce,你至少需要知道以下几点: 1,         MapReduce是运行于分布式文件系统之上的,在Hadoop中就是运行于HDFS之上的: 2,         MapReduce主要用于大规模数据的并行运算,这种大数据通过指1TB以上:…
一.经典MapReduce的作业运行机制 如下图是经典MapReduce作业的工作原理: 1.1 经典MapReduce作业的实体 经典MapReduce作业运行过程包含的实体: 客户端,提交MapReduce作业. JobTracker,协调作业的运行.JobTracker是一个Java应用程序,它的主类是JobTracker. TaskTracker,运行作业划分后的任务.TaskTracker是Java应用程序,它的主类是TaskTracker. 分布式文件系统(一般为HDFS),用来在其…
总体来说大概有以下2个大的步骤 1.连接集群(yarnrunner或者是localjobrunner) 2.submitter.submitJobInternal()在该方法中会创建提交路径,计算切片(writesplits),生成job.xml在路径下,提交job等 下面用windows下执行mr程序的过程进行源码分析,先把你的hadoop所在的盘符下的tmp文件清空.我的是d:/tmp 1.debug执行driver,进入waitForCompletion,然后进入conect(),可以看到…
包含四个独立的实体: ·  Client Node 客户端:编写 MapReduce代码,配置作业,提交MapReduce作业. ·  JobTracker :初始化作业,分配作业,与 TaskTracker通信,协调整个作业的运行. jobtracker是一个Java 应用程序,它的主类是 JobTracker. ·  TaskTracker :保持与 JobTracker通信,在分配的数据片段上执行 Map或Reduce 任务.tasktracker是 Java应用程序,它的主类是TaskT…
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计算出MapTask的数量 (以一个MapTask为例) 5.Maptask调用inputFormat生成RecordReader,将自己处理的切片文件内容打散成K,V值 6.MapTask将打散好的K,V值交给Mapper,Mapper经过一系列的处理将KV值写出 7.写出的KV值被outputCo…