题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图,分成若干个连通块,每个连通块都是一个SCC,且当连通块大小为奇数时候贡献1系数,偶数时候贡献-1系数.(这里把系数放进去可以避免再来一个函数的麻烦!) $h_n$表示n个点有向图个数$h_n=2^{n*(n-1)}$ $h_n=\sum_{i=1}^nC(n,i)\times g(i)\times…
题目分析 n个点的二分染色图计数 很显然的一个式子 \[ \sum_{i=0}^n\binom{n}{i}2^{i(n-i)} \] 很容易把\(2^{i(n-i)}\)拆成卷积形式,前面讲过,不再赘述. n个点的二分图计数 设\(f_n\)表示n个点的二分染色图个数. 设\(g_n\)表示n个点的二分连通图个数. 设\(h_n\)表示n个点的二分图个数. 分别构造f,g,h的EGF\(F,G,H\). 显然有 \[ \begin{aligned} F&=\sum_i(2*G)^i=e^{2G}…
题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方案数. 对于\(g_{n,S}\),有递推式 \[ g_{n,S}=2^{|S|(n-|S|)}g_{n-|S|,\emptyset} \] f与g有如下关系 \[ g_{n,S}=\sum_{S\subseteq T}f_{n,T} \] 子集反演一下 \[ f_{n,S}=\sum_{S\subseteq…
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt 2}^{(i^2)}*{\sqrt 2}^{(n-i)^2}}$ 设$g(n)={\sqrt 2}^{(n^2)}$ 则,$2^{i*(n-i)}=\frac{g(n)}{g(i)*g(n-i)}$ 指数相乘变成指数相加减,把$g(n)$除过去即可 连通 弱联通:变成无向边是连通的 f(n)表示n…
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然后答案\(h_i\)母函数\(H(x)\)就这样解 由于 \[ H(x)=\sum_{i=0}^{\inf} \dfrac {(F(x))^i} {i!} \] 则 \[ H(x)=e^{F(x)} \] 球\(\ln\)就好了 //@winlere #include<iostream> #inc…
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然后答案\(h_i\)母函数\(H(x)\)就这样解 由于 \[ H(x)=\sum_{i=0}^{\inf} \dfrac {(F(x))^i} {i!} \] 则 \[ H(x)=e^{F(x)} \] 球\(\ln\)就是IV,不求的话可以直接手动模拟\(F(x)^i/i!\) //@winl…
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会... 傻啊直接多项式球逆,借鉴一些luogu那道模板分治FFT 这里主要有个很烦人的\(ji-j^2\),现在要构造成\(j,i-j,i\)的的形式就好了,神tst告诉我们 \[ ij = \binom{i}{2} + \binom{j+1}{2} - \binom{i-j}{2}=\dfrac {…
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\(0\)的点转移. 考虑如何保证没有环,钦定完出度为\(0\)的点后,这些点就等着被连接了.还剩下一些点,这些点只要不构成环就好了,就是个子结构,访问以前的DP数组就好了. \[ {i\choose j}2^{j\times (i-j)}dp_{i-j} \] 这样转移显然有方案重复的情况,因为如此计…
有黑白关系: 枚举左部点(黑色点),然后$2^{i*(n-i)}$处理方法同:COGS 2353 2355 2356 2358 有标号的DAG计数 无关系: 发现,假设$f(i)$是一个连通块,对于一个连通块,变成无颜色的,除以二即可 由结论COGS 2353 2355 2356 2358 有标号的DAG计数:G,F为EGF,$G=ln F$ 所以方案就是:$e^{\frac{lnF}{2}}$ 至于连通的话,不用exp就可以了…
COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的点可以选择连向它,剩下的点之间也可以连边. 但是注意到这样子转移可能会存在剩下的点中有点没有出度的情况,考虑容斥解决:设枚举的出度为\(0\)的点的个数为\(i\)时的容斥系数为\(f_i\),那么一个实际上存在\(x\)个出度为\(0\)的点的DAG的贡献就是\(\sum\limits_{i=1}…