OpenMP之求和(用section分块完成)】的更多相关文章

// Sum_section.cpp : 定义控制台应用程序的入口点. //section功能:; //1.指定其内部的代码划分给线程中某个线程,不同的section由不同的线程执行; //2.将一个任务划分成独立的几个section,且section之间是并行执行的; #include "stdafx.h" //#include <stdio.h> #include <time.h> #include "omp.h" #include &l…
题目链接 https://www.luogu.org/problemnew/show/P2261 分析 显然\(k\) \(mod\) \(i=k-\lfloor {k/i}\rfloor\) \(\times\) \(i\),于是我们只需要求\(N * k-\sum_{i=1}^N {\lfloor {k/i}\rfloor\times i}\) 这里就需要数论分块,也称作整除分块的知识 结论: \(\forall{i} \in [x,\lfloor {k/{\lfloor {k/x}\rfl…
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$   i : 1 \  2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10  \\  \lfloor \frac{k}{i} \rfloor :  5 \ 2 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0   $$ 我们推导出假设$ L = i $,那么,对应的 $…
洛谷传送门 bzoj传送门 这道题要用到学习莫比乌斯反演时掌握的整除分块算法,也就是对于一个数n" role="presentation" style="position: relative;">nn,n" role="presentation" style="position: relative;">nn除以1" role="presentation" style…
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi-q=f(i)-q于是,对于区间[l,r],使其之内任意两个整数i,j,都满足k/i=k/j,则f(l)到f(r)是一个递减的等差数列,公差为[k/i].现在就是要把1到n分成这样的一些区间,设某个区间的商(公差)为p设区间内某数为x,则现在要做的是解方程[k/x]=p显然px<=k,因此x<=k…
一.题目 #124. 除数函数求和 二.分析 比较好的一题,首先我们要对题目和样例进行分析,明白题目的意思. 由于对于每一个$d$,它所能整除的数其实都是定的,且数量是$ \lfloor \frac{n}{d} \rfloor $ 最终推导出这个公式 $$  ans =   \sum_{d=1}^{n} \lfloor \frac{n}{d} \rfloor d^{k}$$ 对于$n <= 10^{7}$其实复杂度是可以接受的.但是对于求$d^{k}$这个复杂度如果直接用快速幂预处理肯定会T.…
简化版题意 给出一个长为n的数列,以及n个操作,操作涉及区间开方(每个数都向下取整),区间求和,保证所有数都为有符号32位正整数. N<=50000 Solution 首先我们先思考: 一个有符号32位正整数最多只能被开方几次就会得到相同的值? \(Example\):\(2147483647=2^{31}-1\) 最多5次(由于是向下取整) 所以,我们将数列中的每一个数,都开方5次,复杂度为\(O(5n)\) 然后我们再来考虑如何分块 对于每一个块,我们可以打一个标记\(tag[i]\) 表示…
数列分块是莫队分块的前置技能,练习一下 1.loj6277 给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值. 直接分块+tag即可 #include <bits/stdc++.h> #define ll long long #define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0) #define pp pair<int,int> #define rep(ii,a,b) for(int ii=a;ii&…
定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包含 n 个点的无自环.无重边的 k 可染色无向图中的边数最大值.举例来说,g(3,1)=0,g(3,2)=2,g(3,3)=3. 现在给出三个整数 n,l,r,你需要求解:(\sum_{i=l}^rg(n,i))mod998244354 Solution 把 \(n\) 个点分成 \(m\) 份,尽…
loop系列的指令有:loop,loope/loopz,loopne/loopnz,它们都是借助于ECX寄存器作为计数来实现循环,每轮循环先ecx自动减1,再来判断ecx值,ecx的自减不会影响OF和CF.通用的格式是 loopx lab loop 循环直到ecx为0. 一个错误的例子: .section .data output: .asciz "array[%d]:%d\n" array: .,,,,,,,,, .section .text .globl main main: no…
莫比乌斯反演.先初始化出所有数有多少个质因子和mobius.然后处理mob_sum[ i ][ j ],表示当公因子的因子个数小于等于 j 个的mobius前 i 项和.然后分块求和即可. 分块处理部分见(不会莫比乌斯反演的同学也可以去这里学一下)http://wenku.baidu.com/view/fbe263d384254b35eefd34eb.html. #include<algorithm> #include<iostream> #include<cstring&g…
html5大纲分析工具:https://gsnedders.html5.org/outliner/ <section> <h1>HTML部分</h1> <section> <h2>HTML5的大纲上</h2> <section> <h3>什么是HTML5大纲</h3> </section> <section> <h3>HTML5大纲分析工具</h3>…
转自:https://www.jianshu.com/p/b46a4ff7c10a RecyclerView没有像之前ListView提供divider属性,而是提供了方法 recyclerView.addItemDecoration() 其中ItemDecoration需要我们自己去定制重写,一开始可能有人会觉得麻烦不好用,最后你会发现这种可插拔设计不仅好用,而且功能强大. ItemDecoration类主要是三个方法: public void onDraw(Canvas c, Recycle…
RecyclerView之ItemDecoration由浅入深 作者 小武站台 关注 2016.09.19 18:20 字数 1155 阅读 10480评论 15喜欢 91赞赏 3 译文的GitHub地址:RecyclerView之ItemDecoration由浅入深 译者注:RecyclerView第一篇,希望后面坚持下来 RecyclerView没有像之前ListView提供divider属性,而是提供了方法 recyclerView.addItemDecoration() 其中ItemDe…
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fallen Lord(sort(a+1,a+1+n,greater<int>()); 真好用) P4161 [SCOI2009]游戏 P1707 刷题比赛 2021-10-12 CF1573A Countdown P2717 寒假作业 P7868 [COCI2015-2016#2] VUDU P1660…
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq 10^9$.(一口老血喷到屏幕上) $O(n)$ 行不通了,考虑别的做法. 我们来看一下 $\lfloor\frac{x}{i}\rfloor$ 的值. $x=9$:(不包括0,只有4种取值?) i 1 2 3 4 5 6 7 8 9 10 x/i 9 4 3 2 1 1 1 1 1 0 $x=1…
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29 输入输出格式 输入格式: 两个整数n k 输出格式: 答案 输入输出样例 输入样例#1…
#6281. 数列分块入门 5 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 5   题目描述 给出一个长为 nn 的数列 a_1\ldots a_na1​…an​,以及 nn 个操作,操作涉及区间开方,区间求和. 输入格式 第一行输入一个数字 nn. 第二行输入 nn 个数字,第 ii 个数字为 a_iai​,以空格隔开. 接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt},…
#6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,区间求和. 输入格式 第一行输入一个数字 nn. 第二行输入 nn 个数字,第 ii 个数字为 a_iai​,以空格隔开. 接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt.ll.rr.cc,以空格隔开. 若 \ma…
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个sum数组记录和,加的时候非完整块暴力重构,完整块加整块.查询时非完整块暴力加,完整块加整块 代码如下: #include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include&l…
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^nk\%i=n*k-\sum\limits_{i=1}^ni*\left\lfloor\dfrac{k}{i}\right\rfloor\),这样的话因为\(\left\lfloor\dfrac{k}{i}\right\rfloor\)的取值只有\(O(\sqrt n)\)级别,所以可以每次找到相等…
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 \(k\ \bmod\ i\) 表示 k 除以 i 的余数. 解析 整除分块的一个典型例子. 整除分块解决的是形如 \[ \sum^n_{i=1} ~ \lfloor\frac{n}{i}\rfloor \] 的问题,其复杂度为\(O(\sqrt{n})\). 实际上是规律性的一类问题,打表可以发…
\(\sum_{i=1}^n\;k\;mod\;i\) Solution \(\sum_{i=1}^n\;k\;mod\;i\\=\sum_{i=1}^n(k-i\lfloor{\frac{k}{i}}\rfloor)\\=k\times n-\sum_{i=1}^ni\lfloor{\frac{k}{i}}\rfloor\) 至于后面那项,整除分块即可 #include <bits/stdc++.h> using namespace std; #define int long long si…
题目链接 #include<cmath> #include<cstdio> #include<cctype> #include<algorithm> using namespace std; const int N=1e5+5; #define LL long long int n,belong[N],size; LL A[N],sum[N],tag[N]; inline LL read() { LL now=0,f=1;register char c=ge…
题目链接 #include<cmath> #include<cstdio> #include<cctype> #include<algorithm> using namespace std; const int N=1e5+5; int n,m,A[N],size,belong[N],sum[N]/*某块的总和*/,tag[N]/*某块的加标记*/; inline int read() { int now=0,f=1;register char c=getc…
题解:这道题要打一个乘标记一个加标记,两个标记的优先级是乘法高,所以在乘的时候要将加标记同时乘上一个c,当然,对于每个非完整块一定要记得暴力重构整个块,把加标记和乘标记都初始化. 代码如下: #include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define mod 10007 using namespace std;…
题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. 所以开个tag标记一下当前块是否均为一,如果不是的话每次暴力构块即可 代码如下: #include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorit…
题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29 输入输出格式 输入格式: 两个整数n k 输出格式: 答案 输入输出样例 输入样例#1: 复制 10 5 输出样例#1: 复制 29…
https://www.bnuoj.com/v3/contest_show.php?cid=9149#problem/I [题意] 给定长度为l的一个数组,初始值为0:规定了两种操作: [思路] 找到了一个讲解很清楚的博客http://www.cnblogs.com/flipped/p/HDU4947.html [Accepted] #include <iostream> #include <cstdio> #include <cstring> #include <…
// OpenMP1.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include"omp.h" #include<Windows.h> #include<time.h> #include<iostream> using namespace std; #define NUM_THREADS 4 int _tmain(int argc, _TCHAR* argv[]) { omp_set_…